[image: image26.png]dclipse



[image: image27.wmf]Eclipse

Eclipse

Eclipse

Build Provider

Build Provider

Build Provider

<<

e

xtension

>>

Device 

Management

Device 

Device 

Management

Management

<< 

extension

>>

Security

Management

Security

Security

Management

Management

<< 

extension 

>>

GUI Builder 

Management

GUI Builder 

GUI Builder 

Management

Management

<< 

extension  

>>

Deployment

Management

Deployment

Deployment

Management

Management

<< 

extension

>>

Device 

Description 

Provider

Device 

Device 

Description 

Description 

Provider

Provider

<<

e

xtension

>>

Device Platform 

Provider

Device Platform 

Device Platform 

Provider

Provider

<<

e

xtension

>>

Screen Engine 

Provider

Screen Engine 

Screen Engine 

Provider

Provider

<< 

extension

>>

Preprocessing 

Provider

Preprocessing 

Preprocessing 

Provider

Provider

<< 

extension

>>

Obfuscation 

Provider

Obfuscation 

Obfuscation 

Provider

Provider

<< 

extension

>>

Packaging 

Provider

Packaging 

Packaging 

Provider

Provider

<< 

extension

>>

Signing Provider

Signing Provider

Signing Provider

<<

e

xtension

>>

GUI Builder 

Provider

GUI Builder 

GUI Builder 

Provider

Provider

<<

e

xtension

>>

Build

Management

Build

Build

Management

Management

<< 

extension

>>

Deployment 

Provider

Deployment 

Deployment 

Provider

Provider

<<

e

xtension

>>

Extendable 

Frameworks

Core plug

-

in

s

Service extensions

Extended service 

plug

-

ins

MTJ 

Development 

IDE Plug

-

in

MTJ 

MTJ 

Development 

Development 

IDE Plug

IDE Plug

-

-

in

in

MTJ Core 

Plug

-

in

s

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

s

s

Legend

API and the implementers contribution to 

it’s Extension point

Eclipse

Eclipse

Eclipse

Build Provider

Build Provider

Build Provider

<<

e

xtension

>>

Device 

Management

Device 

Device 

Management

Management

<< 

extension

>>

Security

Management

Security

Security

Management

Management

<< 

extension 

>>

GUI Builder 

Management

GUI Builder 

GUI Builder 

Management

Management

<< 

extension  

>>

Deployment

Management

Deployment

Deployment

Management

Management

<< 

extension

>>

Device 

Description 

Provider

Device 

Device 

Description 

Description 

Provider

Provider

<<

e

xtension

>>

Device Platform 

Provider

Device Platform 

Device Platform 

Provider

Provider

<<

e

xtension

>>

Screen Engine 

Provider

Screen Engine 

Screen Engine 

Provider

Provider

<< 

extension

>>

Preprocessing 

Provider

Preprocessing 

Preprocessing 

Provider

Provider

<< 

extension

>>

Obfuscation 

Provider

Obfuscation 

Obfuscation 

Provider

Provider

<< 

extension

>>

Packaging 

Provider

Packaging 

Packaging 

Provider

Provider

<< 

extension

>>

Packaging 

Provider

Packaging 

Packaging 

Provider

Provider

<< 

extension

>>

Signing Provider

Signing Provider

Signing Provider

<<

e

xtension

>>

Signing Provider

Signing Provider

Signing Provider

<<

e

xtension

>>

GUI Builder 

Provider

GUI Builder 

GUI Builder 

Provider

Provider

<<

e

xtension

>>

Build

Management

Build

Build

Management

Management

<< 

extension

>>

Deployment 

Provider

Deployment 

Deployment 

Provider

Provider

<<

e

xtension

>>

Deployment 

Provider

Deployment 

Deployment 

Provider

Provider

<<

e

xtension

>>

Extendable 

Frameworks

Core plug

-

in

s

Service extensions

Extended service 

plug

-

ins

MTJ 

Development 

IDE Plug

-

in

MTJ 

MTJ 

Development 

Development 

IDE Plug

IDE Plug

-

-

in

in

MTJ Core 

Plug

-

in

s

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

s

s

Legend

API and the implementers contribution to 

it’s Extension point



 Eclipse Mobile Tools for Java Platform

Implementation Overview

DRAFT 0.1.5 

Document Status:  Draft

Last Modified: 16.02.2006

41
Document Control Information


41.1
Change History


41.2
Approval Distribution


51.3
Document Availability


51.4
Document Contributors


62
About This Document


62.1
Purpose


62.2
Intended Audience


62.3
Related Documentation


62.4
Additional Reference Material


62.5
Terminology


73
Implementation Description


73.1
Overview


93.2
MTJ Core Model


93.2.1
Enumerations


103.2.2
Device Platform, Device and Runtime Platform Definition


113.2.3
Device Description


123.2.4
Project


143.3
MTJ Frameworks and extension points


143.3.1
Device Management


163.3.2
Build Management


163.3.3
GUI Builder Management


163.3.4
Deployment Management


163.3.5
Security Management


163.3.6
Build Provider


163.3.7
Device Platform Provider


173.3.8
Device Description Provider


173.3.9
GUI Builder Provider


173.3.10
Screen Engine Provider


173.3.11
Admin GUI Provider


173.3.12
Preprocessing Provider


183.3.13
Obfuscation Provider


183.3.14
Packaging Provider


183.3.15
Signing Provider


183.3.16
Deployment Provider


193.4
Core Implementation Structure


193.4.1
Core Plug-ins


203.4.2
MTJ Development IDE Plug-in


213.4.3
MTJ extension Plug-ins


234
Cvs Structure


234.1
Overview


234.2
Plugins -folder


234.3
Extension Templates -folder


234.4
Releases -folder


245
Mtj Extensions Development


245.1
Checking Out the Source Code


265.2
Setting up the Target Platform


285.3
Running Your EclipseApplication


295.4
Persisting Own Changes


306
Issues


306.1
Issue 1




Document Control Information

The following are members of the approval/review team for this document.  The document owner is responsible for carrying out the approval process.  This document will be distributed to the approvers/reviewers along with a deadline for feedback; the document will be revised based on the feedback and resubmitted for a final review. Please send all “Issues/Concerns”, “Approvals” and other comments on this document to Arto Laurila (mailto:arto.laurila@nokia.com).

This document will reside in the CVS repository and on the Eclipse MTJ web page.

1.1 Change History

	Version
	Date
	Person
	Changes

	Initial Draft
	1/11/2006
	JJ. Niekkamaa
	Initial creation.  Edits will be made under this change listing until first distribution.

	1.4
	1/30/2006
	A. Laurila
	Plug-in category naming change.

	1.5
	2/16/2006
	A. Laurila
	CVS-repository moved to Eclipse.org

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


1.2 Approval Distribution

	Name
	Approval Status
	Position

	Arto Laurila
	 
	Nokia MTJ Architecture Representative

	Kevin Horowitz
	
	IBM MTJ Architecture Representative

	Craig Setera
	
	MTJ Architecture Representative

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


1.3 Document Availability

The latest version of this document is available online at the Eclipse MTJ project web page (put in a hyperlink here).

The responsibility for using the latest level of this document lies with the user of the document.  This version of the document is retained online until superseded by a new level.

1.4 Document Contributors

The following are thanked by the author(s) for their contribution to this document:

· Arto Laurila – Nokia

· … 

About This Document

1.5 Purpose

The purpose of this document is to describe the implementation for the Mobile Tools for Java project.
1.6 Intended Audience

The audience for this document is intended to be any party wishing to extend the MTJ project either for possible contribution to the project itself, or for product/organization specific extensions to the project (e.g. Company xxyy to support debug and deployment to their specific platform(s))

1.7 Related Documentation

1.8 Additional Reference Material

1.9 Terminology

Implementation Description

1.10 Overview

MTJ implementation is modularized by dividing the implementation to different Eclipse plug-ins that is published by MTJ Core plug-in. Also all common MTJ classes are assembled inside the Core Plug-ins. Therefore MTJ functionality implementation component (MTJ Extension) is created as Eclipse Plug-in that extends one or some MTJ extension points and is dependent on the Core Plug-ins.

Core Plug-in is detailed described in section 3.4.1.

[image: image1.wmf]Eclipse

Eclipse

Eclipse

<<extensions>>

<<extensions>>

<<extensions>>

Mtj 

Core

MTJ Core 

Plug

-

in

s

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

s

s

<< Mtj extension 

points >>

<< Mtj extension 

<< Mtj extension 

points >>

points >>

<<extends>>

<<is dependent>>

Eclipse

Eclipse

Eclipse

<<extensions>>

<<extensions>>

<<extensions>>

Mtj 

Core

MTJ Core 

Plug

-

in

s

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

s

s

<< Mtj extension 

points >>

<< Mtj extension 

<< Mtj extension 

points >>

points >>

<<extends>>

<<is dependent>>


MTJ extension points can be divided to three categories by their functionality: 

· extendable framework extension points,
· service extension points and
· extended service extension points.

Dependencies between different extension implementations follow basically the three layers that come from the categorization. So e.g. Device Management –extension that belongs to extendable framework extension points –layer uses Device Platform Provider and Device Description Provider –extensions that are service extension points –layer’s implementation. 

Extension Points are detailed described in section 3.3.

[image: image28.wmf]
All the extension point definitions are using MTJ’s common data structures. Implementation of them is based on Eclipse Modeling Framework (EMF).

Data structures are detailed described in section 3.2.

MTJ Core Model

MTJ common data model implementations are done with Eclipse Modeling Framework (EMF). This section just gives overview of the model and detailed Rose –model of it can be found in the Eclipse MTJ’s CVS:

[image: image2]
Please see the general Eclipse CVS instructions from: http://wiki.eclipse.org/index.php/CVS_Howto
1.10.1 Enumerations

Valid value-group of different attribute types are defined as enumeration inside the corresponding Java class. Current definitions are:

[image: image3.wmf]ActionType

ACTION_TYPE_IF_ELSE : 0

ACTION_TYPE_ELSE_IF : 1

ACTION_TYPE_IF_NOT : 2

ACTION_TYPE_NOT : 3

ACTION_TYPE_DEBUG : 4

(from enumerations)

<<enumeration>>

BuildType

BUILD_TYPE_ANT : 0

BUILD_TYPE_ECLIPSE : 1

(from enumerations)

<<enumeration>>

Capability

BITS_PER_PIXEL : 0

SCREEN_SIZE : 1

CANVAS_SIZE : 2

CAMERA_RESOLUTION : 3

DEVICE_PROFILE : 4

DEVICE_CONFIGURATION : 5

SERVICE_API : 6

JAVA_PROTOCOL : 7

HEAP_SIZE : 8

MAX_JAR_SIZE : 9

OS : 10

VIDEO_FORMAT : 11

SOUND_FORMAT : 12

(from enumerations)

<<enumeration>>

DeploymentType

DEPLOYMENT_TYPE_MIDLET : 0

DEPLOYMENT_TYPE_CDC : 1

DEPLOYMENT_TYPE_OSGI_MIDLET : 2

DEPLOYMENT_TYPE_RESOURCE : 3

(from enumerations)

<<enumeration>>

DeviceCommunicationProtocol

PROTOCOL_UEI : 0

PROTOCOL_XEI : 1

PROTOCOL_OTA : 2

PROTOCOL_OBEX : 3

PROTOCOL_OTHER : 4

(from enumerations)

<<enumeration>>

Expression

EXPRESSION_LT : 0

EXPRESSION_LET : 1

EXPRESSION_EQ : 2

EXPRESSION_NEQ : 3

EXPRESSION_GET : 4

EXPRESSION_GT : 5

(from enumerations)

<<enumeration>>

ExtensionType

EXTENSION_ADMIN_GUI_PROVIDER : 0

EXTENSION_BUILD_MANAGEMENT : 1

EXTENSION_BUILD_PROVIDER : 2

EXTENSION_DEPLOYMENT_MANAGEMENT : 3

EXTENSION_DEVICE_PLATFORM_PROVIDER : 4

EXTENSION_GUI_BUILDER_MANAGEMENT : 5

EXTENSION_GUI_BUILDER_PROVIDER : 6

EXTENSION_PACKAGING_PRODIVER : 7

EXTENSION_PREPROCESSING_PROVIDER : 8

EXTENSION_OBFUSCATION_PROVIDER : 9

EXTENSION_SCREEN_ENGINE_PROVIDER : 10

EXTENSION_SECURITY_MANAGEMENT : 11

EXTENSION_SIGNING_PROVIDER : 12

EXTENSION_DRM_ENCODING_PROVIDER : 13

EXTENSION_DEVICE_MANAGEMENT : 14

EXTENSION_DEVICE_DESCRIPTION_PROVIDER : 15

(from enumerations)

<<enumeration>>

PlatformType

EXECUTABLE_EMULATOR : 0

JAVA_BASED_EMULATOR : 1

OTA_EMULATOR : 2

REAL_DEVICE : 3

(from enumerations)

<<enumeration>>

ProjectType

PROJECT_TYPE_MIDP : 0

PROJECT_TYPE_PERSONAL_PROFILE : 1

(from enumerations)

<<enumeration>>


1.10.2 Device Platform, Device and Runtime Platform Definition

Device Platform contains of one or more Device instances. MTJ plug-in doesn’t know if the Devices are device emulators or real devices because the plug-in extension point API hides all implementation details. Device Platform also consists of Device Platform Configuration. These are the values that are installation –specific and must or could be set by the Device Platform’s user (i.e. emulator’s installation directory).

[image: image4.wmf]Device Platform

Device Platform

Device

Device

Emulator

Device

Emulator

Device

Real

Device

Real

Device

1..n

1

Configuration

Configuration

Device Platform

Device Platform

Device Platform

Device Platform

Device

Device

Emulator

Device

Emulator

Device

Real

Device

Real

Device

Device

Device

Emulator

Device

Emulator

Device

Real

Device

Real

Device

Device

Device

Emulator

Device

Emulator

Device

Real

Device

Real

Device

1..n

1

Configuration

Configuration

Configuration

Configuration


Device contains of Device Description and Device Configuration. Device Description is described in Device Description Provider –section. Configuration represents those values that are installation –specific. Device has also a Runtime Platform Definition that describes the environment that the device is capable to run on. Runtime Platform consists of Device Configuration, Device Profile, Service APIs and JVM Implementation.

[image: image5.wmf]Device

Device

Runtime Platform Definition

Runtime Platform Definition

1..n

1

Configuration

Configuration

1

Device Description

Device Description

Device

Device

Runtime Platform Definition

Runtime Platform Definition

1..n

1

Configuration

Configuration

Configuration

Configuration

1

Device Description

Device Description


Device Configuration defines used configuration (e.g. CDC or CLDC) and its version. Device Profile defines used profile (e.g. MIDP) and its version. Service APIs are either APIs that are defined in Device Profile or API of optional Services that the Device’s OS is supporting. Runtime Platform Definition is always based on defined JVM Implementation. Service API –object contains the standardize service name and it’s version, e.g. WMA 1.1, MMAPI 1.1 or Location API 1.0. Service API has also reference to JAR Library that implements the API. Also Device Configuration has reference to JAR Library that implements the functions. Also JVM Impl –object contains the JVM name and its version.

[image: image6.wmf]Runtime Platform Definition

Runtime Platform Definition

1..n

1..n

Device Profile

Device Profile

DP

Device Configuration

Device Configuration

DC

0..1

JVM Impl

JVM Impl

1..n

Library Jar

Library Jar

1

Library Jar

Library Jar

1

Service API

Service API

API

1..n

Runtime Platform Definition

Runtime Platform Definition

1..n

1..n

Device Profile

Device Profile

DP

Device Profile

Device Profile

DP

DP

Device Configuration

Device Configuration

DC

Device Configuration

Device Configuration

DC

DC

0..1

JVM Impl

JVM Impl

1..n

Library Jar

Library Jar

1

Library Jar

Library Jar

1

Service API

Service API

API

Service API

Service API

API

Service API

Service API

API

API

1..n


1.10.3 Device Description

Device Description shows basic capabilities of devices. Every Device Description instance represents one real device and is identified by vendor name and device model. Capabilities could be device configuration, device profiles or services API that are supported by the device. Capabilities could be also e.g. color depth, screen size, canvas size, camera resolution, supported data exchange protocol, heap size, max jar size, operating system, supported video format or supported sound format.

[image: image7.wmf]Device Description

Device Description

1..n

Device Profile

Device Profile

DP

Service API

Service API

API

Device Configuration

Device Configuration

DC

Device Profile

Device Profile

DP

Device Profile

Device Profile

DP

DP

Service API

Service API

API

Service API

Service API

API

API

Device Configuration

Device Configuration

DC

Device Configuration

Device Configuration

DC

DC

Capability

Capability

Device Description

Device Description

1..n

Device Profile

Device Profile

DP

Service API

Service API

API

Device Configuration

Device Configuration

DC

Device Profile

Device Profile

DP

Device Profile

Device Profile

DP

DP

Service API

Service API

API

Service API

Service API

API

API

Device Configuration

Device Configuration

DC

Device Configuration

Device Configuration

DC

DC

Capability

Capability

Capability

Capability


Device Groups are representing a group of devices that have similar capabilities. The groups capabilities are same that the Device Descriptions’. Device Group has also name and description that help to realize the groups devices capabilities.

[image: image8.wmf]1..n

Device Group

Device Group

Capability

Capability

1..n

Device Group

Device Group

Device Group

Device Group

Capability

Capability

Capability

Capability


1.10.4 Project

Mobile Project development is targeted to devices that have certain Device Configuration and Device Profile. Therefore MTJ’s Project has also Device Configuration and Device Profile defined.

[image: image9.wmf]Project

Project

Project

1..n

1

default

Runtime Platform Definition

Runtime Platform Definition

Device

Device

default

1

DP

APIs

DC

JVM Impl

JVM Impl

1

targets

1..n

LEGEND

:

DP

APIs

DC

•

Project’s defined Device 

Configuration

•

Project’s defined Device 

Profile

•

Service APIs that are 

selected to the Project

Project

Project

Project

1..n

1

default

Runtime Platform Definition

Runtime Platform Definition

Runtime Platform Definition

Runtime Platform Definition

Device

Device

Device

Device

default

1

DP

DP

APIs

APIs

DC

DC

JVM Impl

JVM Impl

1

targets

1..n

LEGEND

:

DP

DP

APIs

APIs

DC

DC

•

Project’s defined Device 

Configuration

•

Project’s defined Device 

Profile

•

Service APIs that are 

selected to the Project


It’s possible to select a set of Service APIs to the Project. Based on the selected set of APIs corresponding Jar –libraries are added to the project. Project always has default device that matches to the Projects definitions. That default device also gives the needed Jar –libraries to the Project.

[image: image10.wmf]RPD

Device

Device

Device

DP

APIs

DC

Project

Project

Project

DP

APIs

DC

1

Library Jar

Library Jar

1..n

Library Jar

Library Jar

1

1

LEGEND

:

DP

DC

DP

APIs

DC

•

Project’s defined Device 

Configuration

•

Project’s defined Device 

Profile

•

Service APIs that are 

selected to the Project

•

Device’s Device 

Configuration

•

Device’s Device Profile

•

Service APIs that are 

supported by the Device

•

Runtime Platform 

Definition

APIs

RPD

1..n

1

default

service 

API Jars

JVM Jar

RPD

Device

Device

Device

DP

APIs

DC

Project

Project

Project

DP

DP

APIs

APIs

DC

DC

1

Library Jar

Library Jar

1..n

Library Jar

Library Jar

1

1

LEGEND

:

DP

DP

DC

DC

DP

DP

APIs

APIs

DC

DC

•

Project’s defined Device 

Configuration

•

Project’s defined Device 

Profile

•

Service APIs that are 

selected to the Project

•

Device’s Device 

Configuration

•

Device’s Device Profile

•

Service APIs that are 

supported by the Device

•

Runtime Platform 

Definition

APIs

APIs

RPD

1..n

1

default

service 

API Jars

JVM Jar


Project can select smaller set of APIs that the targeted devices are supporting. By selecting smallest possible set of needed APIs, the number of suitable devices is bigger.

 Although the Project has the default device, the Projects definitions can match to several devices.

1.11 MTJ Frameworks and extension points

MTJ Core’s defined extension points in layer categories and corresponding Java interfaces are:

MTJ Framework Plug-in Extension Points:
· Device Management


org.eclipse.mtj.core.deviceManagement
· GUI Builder Management

org.eclipse.mtj. core.guiBuilderManagement
· Build Management


org.eclipse.mtj. core.buildManagement
· Security Management


org.eclipse.mtj.core.securityManagement
· Deployment Management

org.eclipse.mtj. core.deploymentManagement
Eclipse-dependent Plug-in Extension Points:
· Build Provider


org.eclipse.mtj. core.buildProvider
· Device Platform Provider

org.eclipse.mtj. core.devicePlatformProvider
· Device Description Provider

org.eclipse.mtj. core.deviceDescriptionProvider
· GUI Builder Provider


org.eclipse.mtj. core.guiBuilderProvider
· Screen Engine Provider

org.eclipse.mtj. core.screenEngineProvider
· Admin GUI Provider


org.eclipse.mtj. core.adminGuiProvider
Standalone Plug-in Extension Points:
· Preprocessing Provider

org.eclipse.mtj. core.preprocessingProvider
· Obfuscation Provider


org.eclipse.mtj. core.obfuscationProvider
· Packaging Provider


org.eclipse.mtj. core.packagingProvider
· Signing Provider


org.eclipse.mtj. core.signingProvider
· Deployment Provider


org.eclipse.mtj. core.deploymentProvider
1.11.1 Device Management

Device Management is responsible to offer services to fetch Device Platforms, Devices and Device Descriptions. It combines data from Device Platform Providers, Device Description Providers and Deployment Providers. Implementer of Device Management is publishing the services by Device Management -extension point interface.

[image: image11.wmf]Device 

Management

Device 

Device 

Management

Management

<< 

extension point 

>>

Device Management 

Implementation

Device Management 

Device Management 

Implementation

Implementation

<< 

extends

> >

Device Platform 

Provider

Device Platform 

Device Platform 

Provider

Provider

<< 

extension point 

>>

Device Platform

Device Platform

Device Platform

<< 

extends

> >

Device Platform

Device Platform

Device Platform

Device Platform

Device Platform

Device Platform

Device Description 

Provider

Device Description 

Device Description 

Provider

Provider

<< 

extension point 

>>

Device Description 

Implementation

Device Description 

Device Description 

Implementation

Implementation

<< 

extends

> >

Device Description 

Implementation

Device Description 

Device Description 

Implementation

Implementation

Device 

Management

Device 

Device 

Management

Management

<< 

extension point 

>>

Device Management 

Implementation

Device Management 

Device Management 

Implementation

Implementation

<< 

extends

> >

Device Platform 

Provider

Device Platform 

Device Platform 

Provider

Provider

<< 

extension point 

>>

Device Platform

Device Platform

Device Platform

<< 

extends

> >

Device Platform

Device Platform

Device Platform

Device Platform

Device Platform

Device Platform

Device Description 

Provider

Device Description 

Device Description 

Provider

Provider

<< 

extension point 

>>

Device Description 

Implementation

Device Description 

Device Description 

Implementation

Implementation

<< 

extends

> >

Device Description 

Implementation

Device Description 

Device Description 

Implementation

Implementation


The Device Management uses Device Platform and Device Description information. 
[image: image12.wmf]Device Management 

Implementation

Device Management 

Device Management 

Implementation

Implementation

MTJ Core 

Plug

-

in

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

3:

getImplementations(

“

Device

Platform

”

)

return:

DevicePlatformProvider

[ ]

Out

Out

Out

2:

getDevices(devicePlatformName

)

1:

getImplementations(

“

Device

Management

”

)

return:

DeviceManagement

[ ]

Device 

Platform

Device 

Device 

Platform

Platform

4:

getDevices

()

return:

Device [ ]

5:

getImplementations(

“

Device

Description

”

)

return:

DeviceDescriptionProvider

[ ]

Device 

Description 

Impl

.

Device 

Device 

Description 

Description 

Impl

Impl

.

.

6:

getDeviceDescription

( String vendor, String model) 

return:

DeviceDescription

return:

Device [ ]

Device Management 

Implementation

Device Management 

Device Management 

Implementation

Implementation

MTJ Core 

Plug

-

in

MTJ Core 

MTJ Core 

Plug

Plug

-

-

in

in

3:

getImplementations(

“

Device

Platform

”

)

return:

DevicePlatformProvider

[ ]

Out

Out

Out

2:

getDevices(devicePlatformName

)

1:

getImplementations(

“

Device

Management

”

)

return:

DeviceManagement

[ ]

Device 

Platform

Device 

Device 

Platform

Platform

4:

getDevices

()

return:

Device [ ]

5:

getImplementations(

“

Device

Description

”

)

return:

DeviceDescriptionProvider

[ ]

Device 

Description 

Impl

.

Device 

Device 

Description 

Description 

Impl

Impl

.

.

6:

getDeviceDescription

( String vendor, String model) 

return:

DeviceDescription

return:

Device [ ]


Device Management’s method getDevices( devicePlatformName ) return all existing devices from the Device Platform which name corresponds the argument value. Control flow of the method implementation in MTJ environment is:

1: Client, who wants to call the method, first get reference to the Device Management implementation by calling MTJ Core’s method getImplementation with argument ”Device Management”.

2: Client calls the Device Management implementation’s getDevices -method.

3: Device Management implementation get reference to the Device Platform implementations by calling MTJ Core’s method getImplementation with argument ”Device Platform”.

4: Device Management implementation selects the Device Platform that corresponds the name that it get as parameter in the original method-call and call that Device Platform’s getDevices -method. The method returns all existing Devices in the DevicePlatform.

5: Device Manager needs to add Device Description info to the Devices data. Therefore it gets reference to the Device Description Provider implementation by calling MTJ Core’s method getImplementation with an argument ”Device Description Provider”.

6: Device Manager get Device Description info to every Device by calling Device Description Provider’s method getDeviceDescription with arguments of different Devices.

1.11.2 Build Management

Build Management is responsible to carry out the build process. Implementer of Build Management is publishing the services by Build Management -extension point interface. Method build functionality is:

· Collect Project –data structure, which is described in the Build Provider section, from the project that is given as parameter.

· Get suitable Build Provider implementation from MTJ

· Calls the Build Provider’s build method.

 Build Management is also responsible of automatic builds in Eclipse environment.
1.11.3 GUI Builder Management 

GUI Builder is inherited and extended from Eclipse Visual Editor (VE) framework. The base VE framework is enhanced with the mobile features and mobile domain specific screen engines. Each screen engine implementation can extend different mobile vendor specific look & feels and device requirements as also the domain specific UI components and widgets. The VE can be enhanced with the multimedia specific features, e.g. to enable support for OpenGL, SVG-T, etc.

1.11.4 Deployment Management

t.b.a.
1.11.5 Security Management
The Security Management services provide management for the keys and certificates. The Security Management is a global service, i.e. the managed keys and certificates can be used in what ever mobile project.

1.11.6 [image: image29.wmf]Build Provider

Build Provider is responsible to the build the project from source to deployment. Build Provider instances can implement the build process differently. Method getSupportedTypes that returns the build types that are supported by the Build Provider. 

1.11.7 [image: image30.wmf]Device Platform Provider

Target environments are seen as Device Platforms by the MTJ environment. Device Platform’s type could be emulator platform or real device platform. Functionalities, that the Device Platform does implement, are:

· binary code pre-verification and

· application launching.
1.11.8 [image: image31.wmf]Device Description Provider

Device Description Provider offers information about devices and groups them by similar capabilities. Functionalities, which the Device Description Provider implements, are:

· Device Description database,

· Matching Device Descriptions query based on a Device Group and

· Management of custom Device Groups.
1.11.9 GUI Builder Provider

The GUI builder is inherited form the Visual Editor project. The base functionality is enhanced with the mobile features e.g. like the multimedia support needs.
1.11.10 Screen Engine Provider

The Screen Engine provider does implement the J2ME specific profile UI layouts and UI components. E.g. the MIDP screen engine provides the LCDUI layouts, look & feel and UI components. Other mobile vendors may extend this approach by providing their own implementations (like Nokia L&F).
1.11.11 Admin GUI Provider

MTJ Development IDE is depending on MTJ Core Plug-in. It also publishes a new extension point Admin GUI Provider that is used to add new functionalities to MTJ Development IDE. All MTJ extension point implementers, like Device Platform Provider, that need Administration GUIs, must do it by implementing the Admin GUI Provider extension point.
[image: image13.wmf]MTJ Core Plug

-

in

MTJ Core Plug

MTJ Core Plug

-

-

in

in

<<

depends

>>

MTJ Development IDE

MTJ Development IDE

MTJ Development IDE

Admin GUI Provider

Admin GUI Provider

Admin GUI Provider

<<

e

xtension

>>

MTJ Core Plug

-

in

MTJ Core Plug

MTJ Core Plug

-

-

in

in

<<

depends

>>

MTJ Development IDE

MTJ Development IDE

MTJ Development IDE

Admin GUI Provider

Admin GUI Provider

Admin GUI Provider

<<

e

xtension

>>


1.11.12 Preprocessing Provider

Preprocessing is used to solve device fragmentation problem in source code level. Preprocessing Provider implements functionality that is used to modify source code to match target devices. Method process switches the code blocks on, that follows the given processing conditions, and switches off other ones.

 It also implements functionality that is used to get code template for a given processing condition. 
1.11.13 Obfuscation Provider

Obfuscation Provider is used to obfuscate source code.
1.11.14 [image: image32.wmf]Packaging Provider

Packaging Provider is responsible of creating deployment packages from application projects resources. Realization of the result Deployment object depends on the parameter type. Also resource objects are depending on the type. Deployment Creator implementer's method getSupportedTypes that returns the deployment types that are supported by itself. Created deployments are created to folder that is defined by targetFolder attribute. I.e. MIDlet project deployment consists of Application JAR and JAD files.

1.11.15 [image: image33.wmf]Signing Provider

Signing Provider is responsible to sign project’s different Deployment packages. 

1.11.16 Deployment Provider

Deployment Provider is responsible to deploy resources to target Device. 

Core Implementation Structure

1.11.17 Core Plug-ins

The MTJ Core Plug-ins are:
· MTJ Core Model,
· MTJ Core and
· MTJ Core Ui.
Dependences between the core plug-ins are show in the picture above:
[image: image14.wmf]Eclipse

Eclipse

Eclipse

MTJ Core

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<<is dependent>>

MTJ Core 

Model

MTJ Core 

MTJ Core 

Model

Model

MTJ Core 

MTJ Core 

MTJ Core 

MTJ Core 

UI

MTJ Core 

MTJ Core 

UI

UI

Eclipse

Eclipse

Eclipse

MTJ Core

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<<is dependent>>

MTJ Core 

Model

MTJ Core 

MTJ Core 

Model

Model

MTJ Core 

MTJ Core 

MTJ Core 

MTJ Core 

UI

MTJ Core 

MTJ Core 

UI

UI


MTJ Core Model -plug-in

Implementation of the MTJ’s core data structure of EMF is packaged to the MTJ Core Model –plug-in. 
Plug-in’s Eclipse id is org.eclipse.mtj.core.model. 
MTJ Core –plug-in

The MTJ Core Plug-In is the main plug-in that is tied to the Eclipse workbench. It holds all the MTJ extension point interfaces and core model classes except those that are defined by MTJ’s EMF model. It has a wide set of methods to find, initialize and access to all MTJ main services. The definition set of active extension point can be applied through the MTJ Core plug-in interface. The actual business logic is not written in the MTJ Core plug-in, but it is implemented in a separate service plug-in that extends the MTJ Core plug-in extension point.  

The MTJ Core Plug-In has a wide set of methods to find, initialize and access to all MTJ main services. MTJ main services introduce each Eclipse extension points, which interface is implemented in the service extension. 
The MTJ Core Plug-In has functionality that makes it possible to mark existing MTJ extension point implementation to active or passive. So with the MTJ functions it’s possible to choose, what plug-ins are in use, in the case that there are several implementations existing in the MTJ Eclipse workspace.
MTJ Core Plug-in’s functionalities are published by MtjServices interface. E.g. to get the active Build Provider –plug-ins can be done with the code:

[image: image15]
Plug-in’s Eclipse id is org.eclipse.mtj.core..
MTJ Core Ui -plug-in

MTJ Core Ui -plug-in implements admin GUI that makes it possible to choose which extension point implementations are used by the MTJ in the case that are several implementation of the extension point.

The Plug-in’s Eclipse id is org.eclipse.mtj.core.ui.

1.11.18 MTJ Development IDE Plug-in

MTJ Development IDE -plug-in implements all the Eclipse 

· Mtj perspective,

· Mtj nature,

· Mtj views,

· Mtj editors and

· Mtj wizards

 Those are used to develop Mobile applications in Eclipse MTJ environment.
Plug-in’s Eclipse id is org.eclipse.mtj.ide.

1.11.19 MTJ extension Plug-ins

MTJ extension point implementation plug-ins must be dependent on MTJ Core Model and MTJ Core –plug-in to get the common classes and functionalities of MTJ.

[image: image16.wmf]Eclipse

Eclipse

Eclipse

MTJ Core

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<<is dependent>>

MTJ Core 

Model

MTJ Core 

MTJ Core 

Model

Model

MTJ Core 

MTJ Core 

MTJ Core 

MTJ Core 

UI

MTJ Core 

MTJ Core 

UI

UI

<<extensions>>

<<extensions>>

<<extensions>>

<<extends>>

Eclipse

Eclipse

Eclipse

MTJ Core

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<< MTJ extension points >>

<<is dependent>>

MTJ Core 

Model

MTJ Core 

MTJ Core 

Model

Model

MTJ Core 

MTJ Core 

MTJ Core 

MTJ Core 

UI

MTJ Core 

MTJ Core 

UI

UI

<<extensions>>

<<extensions>>

<<extensions>>

<<extends>>


MTJ extension –plug-ins should also be at least dependent on
· org.eclipse.core.runtime,

· org.eclipse.core.resources and

· org.eclipse.emf.ecore

plug-ins.

The plug-ins Eclipse ids are 

· Device Management


org.eclipse.mtj.extension.devmgmt
· GUI Builder Management


org.eclipse.mtj.extension.gbmgmt
· Build Management


org.eclipse.mtj.extension.bmgmt
· Security Management


org.eclipse.mtj.extension.smgmt
· Deployment Management


org.eclipse.mtj.extension.depmgmt
· Build Provider



org.eclipse.mtj.extension.bp

· Device Platform Provider


org.eclipse.mtj.extension.dpp

· Device Description Provider

org.eclipse.mtj.extension.ddp

· GUI Builder Provider


org.eclipse.mtj.extension.gbp

· Screen Engine Provider


org.eclipse.mtj.extension.sep

· Preprocessing Provider


org.eclipse.mtj.extension.prep

· Obfuscation Provider


org.eclipse.mtj.extension.op

· Packaging Provider


org.eclipse.mtj.extension.pkgp

· Signing Provider



org.eclipse.mtj.extension.sp

· Deployment Provider


org.eclipse.mtj.extension.depp

Implementation package structures follow the same structure.
CSV Structure

1.12 Overview

MTJ CVS root is named as org.eclipse.mtj and it can be checked out with manual command:


[image: image17]
It contains folders plug-ins, extension templates and releases.

Or by creating CVS-repository in Eclipse:

[image: image18.png]€ Add CV5 Repo:

"y

Add a new CvS Repository

Ak e CUS Repostoy o the G5 Reposkores view [cva
Locaton
o [devdoae g

L Ll

Repastory pat [ evereaidsdn

Authentication

L

User

password: |

-Connection

e types [server

& Use default part
© Use port

IV yalidate connection on finish

T~ Save password

Saved passwords are stored on your computer n a il that i dficut, but not
impossile, for an intruder to read.

&=





1.13 Plug-ins -folder
Plug-ins –folder contains all the existing MTJ plug-in –implementations in their own folders. Folder org.eclipse.mtj contains Eclipse–feature –project and others are Eclipse plug-in –projects.
1.14 Extension Templates -folder

Folder extension templates contain ready-made starting points for extension development. See section 5 how to use the templates in the extension development.
1.15 Releases -folder

Folder releases contains development versions of the MTJ plug-ins.

[to-do this will be described later]
MTJ Extensions Development 

This tutorial shows you how to set up your Eclipse environment to develop or modify the MTJ project plug-ins. First we will discuss how to connect to the CVS repository to check out the MTJ source code. We will then set up our target platform. Next we will make a modification to the MTJ source and run our eclipse application. 

1.16 Checking Out the Source Code
1.16.1 The normal developer case
1. Access the source code for the Eclipse MTJ from the Concurrent Versions System (CVS) repository. To access the CVS repository select Window > Open Perspective > Other and select CVS Repository Exploring. 

2. The CVS Repositories view is now visible in your Eclipse workbench. Select the Add CVS Repository icon (or press right button -> New) and in the Add CVS repository dialog enter the following values: 
	Host:
	dev.eclipse.org

	Repository path:
	/cvsroot/dsdp

	Connection type:
	pserver 

	UID & PW:
	Valid user id and no password (empty)


[image: image19.png]€ Add CV5 Repo:

"y

Add a new CvS Repository

Ak e CUS Repostoy o the G5 Reposkores view [cva
Locaton
o [devdoae g

L Ll

Repastory pat [ evereaidsdn

Authentication

L

User

password: |

-Connection

e types [server

& Use default part
© Use port

IV yalidate connection on finish

T~ Save password

Saved passwords are stored on your computer n a il that i dficut, but not
impossile, for an intruder to read.

&=





And select finish.
MTJ sub-folder is /org.eclipse.mtj
(These guides apply to normal networking environment. If you are having extra firewalls etc. networking services, they may prevent you to access the Eclipse site. In such case, please read the following:  http://wiki.eclipse.org/index.php/CVS_Howto and contact your network support.)
3. The available repositories are shown e.g. when you import project from the CVS

[image: image20.png]€ Checkout from CVS

Checkout Project from CVS Repository —

This wizard allows you to checkout projects from a CV5 Repository.
" Create anew reposttory location

 Use existing repository location

(0 sextsshalauria@dev.ecipse.org: cvsrootdsdpjorg.ecipse.mty

<Back. et > Fiish Cancel





Select Next

4. Select the org.eclipse.mtj sub-folder from this folder view

[image: image21.png]€ Checkout from C¥S

Select Module
Select the madue to be checked out fram Cs

" Use spectied module name: [ cclpee. i)

 Use an existing mocle (this wil alow you to browse the mochles n the repostory)

& cvsrooT

& cusrooT
& mtyhome

& org.edlpse.mt

& org.edlpse.mtj releng

G org.eclpse.mtj releng.buider
& org.eclpse.tm.core

& org.edlipse.tmrse

<o | woes | ] cnl





There are visible two other sub-folders that are related to the DSDP main project, please do not use those.
5. Navigate through the folders and find the plug-ins that you are interested in having the source for. The most recent code is in HEAD. The MTJ plug-ins are found in the org.eclipse.mtj folder. For this example we will modify org.eclipse.mtj/plugins/org.eclipse.mtj.extension.dpp. 

[image: image22.png]€ Checkout from C¥S 2

Select Module —

€ Use spectied module name: [ eclpee. ) o0 eclpee. mi/pane

 Use an existing mocle (this wil alow you to browse the mochles n the repostory)

& cvsrooT
- org.eclpse.mt

& cusrooT

& mtyhome

- org.eclpse.mt

= extension templates

& org.eclpse.mj.core
& org.eclpse.mj.core.model

& org.edlipse.mj core.i

&> org.eclpse.mtj.extension.dpln
& org.eclpse.mj.extension.dpim.ui
& org.edlpse.mtj extension.dpp
G org.edlpse.mtj extension. pm
G org.eclpse.mtj.extension.rpm.ui
& tests

G org.edlpse.mtj releng

G org.eclpse.mtj releng.buider

& org.eclpse.tm.core

& org.edlipse.tmrse

<o | woes | ] cnl





6. Add the project into your local workspace by right clicking on that plug-in and selecting "Check Out".
[image: image23.png]€ Checkout from C¥S

Select Module
Select the madue to be checked out fram Cs

€ Use spectied module name: [ eclpee. mij/ora.eclpse b pluans/ord. eclpse i) &

 Use an existing mocle (this wil alow you to browse the mochles n the repostory)

& cvsrooT
- org.eclpse.mt

& cusrooT

& mtyhome

- org.eclpse.mt

= extension templates

& features

- plugins

& org.eclpse.mj.core

& org.eclpse.mj.core.model

& org.edlipse.mj core.i

&> org.eclpse.mtj.extension.dpln
& org.eclpse ) extension.dplm.i

. oo
G org.eclpse.mj extension. rpm
G org.eclpse.mtj.extension.rpm.ui

& tests

G org.edlpse.mtj releng

G org.eclpse.mtj releng.buider
& org.eclpse.tm.core

& org.edlipse.tmrse

<o | woes | ] cnl





5. Switch back to the Java perspective. The source code for the plug-in you downloaded is now in your workspace.
1.16.2 The committer case
The CVS repository access is similar to the normal developers case, but the connection type is using SSH and the Committer has to have valid Committer user-id and password issued by Eclipse.
	Host:
	dev.eclipse.org

	Repository path:
	/cvsroot/dsdp

	Connection type:
	Extssh (normal port)

	UID & PW:
	Valid user id and password 


[image: image24.png]€ Add CV5 Repo:

ry

Add a new CvS Repository
Acd anew CVS Repository to the CVS Repostories view T

CVs)

-Location

o [devdoae g

L Ll

Repastory pat [ evereaidsdn

-Authentication

ot [

password: |

L

-Connection

Connection type:

& Use default port
© Use port;

¥ valdate connection on finish

I Save password

Saved passwords are stored on your computer n a il that i dficut, but not
impossile, for an intruder to read.

==





1.17 Setting up the Target Platform

The target platform specified contains the eclipse plug-ins which your code will be compiled against. Having a target platform allows you to compile and run your modified code without having to bring all of the source code into your development workbench. The target platform should be the same platform you are developing for. 

To set up your target platform:

1. Download and install the desired Eclipse and MTJ versions in a separate folder from your current development Eclipse platform. Ensure that this new platform runs. This will be your target platform. 

Download the Eclipse 3.1 platform from Eclipse download proxy.
[To-do, define plug-in versions]
	Nr
	Plug-in name
	Version

	1
	Eclipse core
	3.1.1

	2
	
	

	3
	
	

	4
	
	

	5
	
	

	6
	
	

	7
	
	


1.18 Running Your Eclipse Application

1. In the Java perspective from the menu bar select Run > Run. 

2. In the Run dialog select the Eclipse Application option, then select new. 

3. Enter the location of the desired workspace, and select Run.


[image: image25.emf] 


When this version of Eclipse is run it compiles the source code in your workspace, and runs from your target platform. A second instance of Eclipse is now running and you are now able to test any code modifications you have made. 

1.19 Persisting Own Changes
To be able to contribute to the Eclipse CVS, you must be a valid, approved committer in MTJ project. 

To contribute an enhancement to MTJ, you can commit your code changes to cvs repository. In the Package Explorer view, right click on the modified plug-in project and select first


Team > Synchronize with Repository

If you have changed any source code, select first 

Team > Update

To check that has somebody else changed anything in the cvs repository and then

 
Team > Commit
After that you should select again

Team > Update

(for to get verification of the latest situation in the cvs.)
Issues

The following are known issues and their status.  

State:  The current state of the issue.  Possible values:

· Open

· Resolved <mm/dd/yyyy>

· Deferred

Date Opened: The date this issue was created.

Description:  Complete details clearly defining the issue. 

Action plan:  An account of what steps are being take to resolve this issue.
1.20 Issue 1

State:  Open

Date Opened: xx/yy/zz
Description:  The issue

Action plan:  Resolve it.



















cvs -d :pserver;username=anonymous;hostname=dev.eclipse.org:/cvsroot/dsdp checkout org.eclipse.mtj





Repository location: /cvsroot/dsdp 





And in sub-folder:�org.eclipse.mtj/mtj-home/models








MtjExtension[] list = 


MtjServices.getInstance().getImplementations(


ExtensionType.BUILD_PROVIDER, null, null);








Page 37 of 37





        MTJ Implementation Overview


_1198494060.doc
[image: image1.png]2 WP Tutorials - Developing the WTP with Eclipse - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qo - © (%] B @ POt Fprawres € (22 - [ JE B

ckress [ ] ttpjfww.eclpse.orgjwebtonlscommunity tutoraksiDeveloping TP DevelopingWTP il

g Your Eclipse Application

1. In the Java perspective from the menu bar select Run > Run.
2. Inthe Run dialog select the Eclipse Application option, then select new.

3. Enter the location of the desired workspace, and select Run

Create, manage, and run configurations

Creste a configuretion to launch an Eclipse applicaton, @

Configurations: Name: [ run_ecipse]
5® Edipse Applcation
© New_confiquration -
® i £ | % oo | [ cotiuration| 5 Tec | 18 Envrement | 5 s | 1 conmen
ava Appication ~Workspace Data

e Locaton: [ CIightl BulNZ00501 26 edipselmorispece =] _browse

3 kPl Test

I~ Clear workspace data before launching

IV st for confrmation before clearin

[-Program toRun

& Run an spplcation:[org,ecipse.vide.warkbench

|
g

C Runaproduct:  [org ecipee platiorm

-Command Line Settings
JavaBrecitable:  © defak  ( java

Runtime e [rets.001 =] nstaed s,

VM Arguments:

Program Argunents:

Bootstrap Entries:

et

When this version of Eclipse is run it compiles the source code in your workspace, and runs from your target platform. A second instance of Eclipse is now running and you are now able to test any code modifications
you have made.

& © Intermet








