
fontinst
Font installation software for TEX

tfm

afm

pl vplfd

vf pfa pfbtex

dvi

ps

fontinst

pltotf vptovf

latex

dvips

Alan Jeffrey Rowland McDonnell

Lars Hellström
fontinst v1.9 · August 2009

This manual describes the fontinst software for converting fonts from Adobe Font Metric format
to forms readable by TEX. This manual should be distributed with the fontinst software, which
is available by anonymous FTP from ftp://ftp.tex.ac.uk/tex-archive/fonts/utilities/

fontinst, and on the various CD-ROMs containing material from the CTAN archives. Please
do not contact the author directly for copies.

If you would like to report a bug with fontinst, please mail fontinst@tug.org. The mail will

be sent to the fontinst mailing list. If you would like to be on the fontinst mailing list, see

http://tug.org/mailman/listinfo/fontinst.

Contents

1 Introduction 4
1.1 Overview of the process . 5

2 Defining terms 5
2.1 What’s a font? . 6
2.2 Fonts and characters . 10
2.3 What are verbatim, typewriter, and monowidth fonts? 11

3 Fontmaking commands 13
3.1 Install commands . 13
3.2 Transformation commands . 17
3.3 The \latinfamily command . 18
3.4 Reglyphing commands . 19
3.5 Miscellaneous settings . 20
3.6 Low-level conversion commands 22
3.7 Other . 23

4 Mapmaking commands 23
4.1 Mapfile command reference . 23
4.2 Drivers . 24
4.3 Configuration commands . 24
4.4 Basic conversion commands . 27

5 General commands 28
5.1 Variables . 28
5.2 Argument types and expansion 30
5.3 Integer expressions . 31
5.4 Conditionals and loops . 32
5.5 Other general commands . 35

6 Encoding files 36
6.1 Encoding commands . 37
6.2 Slot commands . 38
6.3 Other . 40

2

7 Metric files 41
7.1 Metric commands . 41
7.2 Glyph commands . 43
7.3 Kerning commands . 46
7.4 Other . 47

8 fontdoc commands 47
8.1 Comment commands . 48
8.2 Style control commands . 48

9 fontinst variables 48

10 Customisation 58

11 Notes on features new with v 1.9 58
11.1 Metric packages . 58
11.2 Word boundary ligatures and kerns 59
11.3 Changing the names of glyphs 61
11.4 Making map file fragments . 62
11.5 Tuning accent positions—an application of loops 65
11.6 Font installation commands . 67
11.7 Bounding boxes . 70

3

1 Introduction

The purpose of fontinst is to make digital fonts, as they may be bought from a
foundry or other supplier, usable with (LA)TEX; in general, they are not directly
so. An obvious problem can be that the font information is not available in a
format that TEX understands. A more subtle problem is that the fonts are often
organised in a way that is unsuitable for automatic typesetting. It is further-
more necessary to inform (LA)TEX and related software about the existence of
the new font, and the pieces of code needed to do this are somewhat exotic.

Regarding the first problem, fontinst can bridge the gap between non-TEX and
TEX-specific file formats, but may need some help from other tools (pltotf,
vptovf, ttf2afm, etc.) with conversions between text and binary file formats.
Regarding the last problem, fontinst can generate the necessary code, although
you may in some cases need to paste it into the right configuration file your-
self. It is however with respect to the second problem that fontinst shines, as
the many minutiae of providing fonts for (LA)TEX are automated to a very high
degree, while still providing you as user with the power to fine-tune every de-
tail of the output. In addition, fontinst is available for every platform that has
TEX.

The reason fontinst is so portable is simply that it is written in TEX, exploiting
those features of the language which does other things than typesetting. A
drawback of this is the inability to work directly with binary file formats, but
an advantage is that users do not need to learn a separate command language
before they can configure the tool; fontinst only introduces a set of new TEX
commands, not a new set of syntax rules. Moreover, many encoding and met-
ric files used with fontinst can also be typeset as LATEX documents, yielding a
rendering of their contents which might be more pleasing to the eye than the
raw code.

The main thing fontinst does is creating virtual fonts (vf’s). For this, it takes
the approach that the world is full of glyphs, and a subset of these are to be
picked, perhaps tweaked, and finally wrapped up as a new font for TEX to
use. In the basic case where one merely wants to make a specific foundry-
supplied font available to TEX, what one does is to present only that font as
glyphbase for fontinst, since this means all glyphs in the resulting virtual font
will come from that base font, only reorganised to meet the requirements of
(LA)TEX. It is however not uncommon to use several base fonts for forming a
single glyphbase, maybe because the foundry has arbitrarily decided to divide
the basic font up into separate “base”, “expert”, and “alternate” varieties that
don’t match the needs of TEX, or maybe because the foundry did not provide
all the glyphs of standard TEX fonts and glyphs from some other font family are
used to fill in the gaps. Either way, since it’s you that’s doing the packaging, it
is you that gets to say what goes into the package.

In the process of creating some virtual fonts, many minor pieces of data are
encounted that would be needed when informing (LA)TEX and related software
about these new fonts. Fontinst records this information and provides for writ-
ing finished files in the most common formats, notably LATEX fd files and dvips

map files. One can even ask fontinst to have certain transformations performed

4

on the base fonts, to extend or tweak the repertoire of glyph shapes that are
available.

1.1 Overview of the process

If you’re using fontinst, the usual steps you need to take to use an ordinary
PostScript latin text font with LATEX are these: Related

commands:
1. Gather afm files for the base fonts you want to make use of, and (option-

ally) give the afm files appropriate names.

2. Use fontinst to produce 8r encoded pl files from these afm files. \transformfont

3. Use fontinst to create T1 and OT1 encoded pl and vpl files from the 8r \installfont

encoded pl files (this procedure will also create suitable fd files).

4. Use fontinst (its finstmsc.sty variety) to generate the mapfile entries \adddriver

needed for the above.

5. Use pltotf to turn each pl file into a tfm file.

6. Use vptovf to turn each vpl file into a pair of vf and tfm files.

7. Move the tfm, vf, and fd files into the appropriate directories so LATEX
can see them.

8. Tell your dvi driver about the new font (typically involves editing some
configuration file or files, possibly also running some helper command
to update cached configuration information).

9. Test it. (The LATEX command \usefont lets you select a font by encoding,
family, series, and shape. The PlainTEX file testfont.tex provides an
easy way of producing font tables.)

10. Perhaps write a package file to make selecting the new font a little easier.

The examples/basic/basicex.tex file contains examples of doing 2 and 3; in
many cases, it is possible to use the \latinfamily command to do all of this.
The examples/basic/basicex2.texfile contains examples of doing 4.

2 Defining terms

The process of making fonts usable involves some rather technical issues, so
in order to understand a discussion of what is going on, it is necessary to first
get the terminology straight. Feel free to skip parts of this if you think you
already know the material covered or for the moment want to concentrate on
other aspects of what fontinst does, but bear in mind that you may then have
reason to return to this section at a later time.

5

2.1 What’s a font?

Once upon a time, this question was easily answered: a font is a set of type
in one size, style, etc. There used to be no ambiguity, because a font was a
collection of chunks of type metal kept in a drawer, one drawer for each font.

These days, with digital typesetting, things are more complicated. What a font
‘is’ isn’t easy to pin down. A typical use of a PostScript font with LATEX might
use these elements:

• Type 1 printer font file

• Bitmap screen font file

• Adobe font metric file (afm file)

• TEX font metric file (tfm file)

• Virtual font file (vf file)

• font definition file (fd file)

Looked at from a particular point of view, each of these files ‘is’ the font. So
what’s going on?

2.1.1 Type 1 printer font files

These files contain the information needed by your printer to draw the shapes
of all the characters in a font. They’re typically files with a pfa or pfb exten-
sion; on Macs they’re usually in files of type ‘LWFN’ and have icons that look
like a laser printer. The information in all these formats is basically the same:
the only difference is in its representation. pfa stands for ‘printer font ASCII’,
while pfb stands for ‘printer font binary’. pfa files are pure PostScript code
(though in parts highly convoluted) and can typically be pasted into or copied
from PostScript documents using a text editor if one feels like hacking. Since
pfa files contain a large chunk of hex-encoded binary data, they are however
about twice the size of the equivalent pfb, where text and binary data reside in
separate sections of an overall binary file format.

Printer font files are not used directly by TEX at all – TEX just prepares a dvi

file that refers to the fonts by name and the characters by number: TEX knows
nothing about the shapes involved. The dvi driver uses the printer font files
when you ask it to print the dvi file. This means that you can produce a dvi

file which uses, say, Palatino, even if you do not have the Type 1 printer font
file for this font on your computer. You will need to find a computer that does
have Palatino before you can print it or preview it, though. (PdfTEX is different
from TEX in this respect; since pdfTEX integrates most of the functionality of a
dvi driver, it may be unable to generate working pdf output if the some Type 1
printer font file is not available.)

Dvi drivers generating pdf often require Type 1 fonts to be in pfb format, as
that is very close to how the data is stored in a pdf file.

6

2.1.2 Bitmap screen font files

These files contain a low-resolution bitmap for drawing a representation of
the font on the screen of your computer if ATM is not installed. In the TEX
world, these files are only used for screen previews by dvi drivers that use the
windowing system for rendering text.

Technically, pk files are also bitmap font files, for use on screen or with a printer,
but TEX systems tend to be set up so that pk files are generated automatically
when needed. (Of course, this requires that the font is first available in some
other format, usually mf or pfb.)

2.1.3 Adobe font metric files (afm files)

These files are text files which contain information about the size of each char-
acter in a font, kerning and ligature information, and so on. They can’t be used
by TEX directly, but the information they contain is essential if you want to use
a font with TEX. Fontinst can from an afm file create the necessary tfm and vf

files (well, really pl and vpl files, but see below) so you can use a font with
TEX. Once you have created all the files you need to use a font with TEX, you
can remove the corresponding afm files from your computer unless you have
other software that needs them.

The job of turning an afm file into a set of tfm and vf files is one of the main
uses for fontinst. Most of this document is concerned with this process, so don’t
worry if it seems a bit vague at the moment.

2.1.4 TrueType and OpenType font files

The TrueType format was created as an Apple–Microsoft collaboration to avoid
being dependent on Adobe’s font technologies. Later Adobe and Microsoft
went on to define the OpenType format, which is a development of TrueType.
However, the three don’t always agree on the fine details of the format.

A TrueType font file is a collection of rather disparate tables, and can therefore
contain scalable outline fonts (like PostScript type 1), bitmap screen fonts, and
font metrics all in one file; for software with direct support for TrueType this
tends to simplify font installation, but for TEX it rather adds a level of complic-
ation. An advantage for TEX use is that the suppliers provide font metrics in a
cross-platform format (as opposed to rather obscure platform-specific formats,
which could previously be the norm), but they still have to undergo conversion
before we can use them. TrueType is furthermore a “there is more than one way
to do it” format, so it sometimes happens that information which is present in
the font is ignored by some programs because that information happened to be
in an unusal format. . .

Classical TrueType fonts have outlines defined in terms of quadratic Bezier
curves. The main addition in the OpenType specification was a second outline
format (CFF/type 2) which uses cubic Bezier curves. Both outline formats are
directly supported in pdf and can (even if the driver doesn’t have built-in sup-
port for the format) with a thin wrapper be used in PostScript, but there is also

7

a tradition of rather converting to type 1 before using such fonts with TEX; the
latter leads to a slight drop in quality.

2.1.5 TEX font metric files (tfm files)

These are binary data files in a format designed for use by TEX which contain
(more-or-less) the same information as afm files: the size of each character in a
font (font metric data), kerning, and ligature information.

When you select a font in TEX, you are telling TEX to typeset using a particular
tfm file; from TEX’s point of view, a tfm file (and nothing else) is a font. TEX
itself doesn’t see printer font files, screen bitmaps, pk files, vf files, or anything
else to do with fonts: only tfm files.

TEX uses these tfm files to decide where to put characters when typesetting.
From TEX’s point of view, tfm files are fonts, even though they contain no in-
formation about the shape of letters, and are rarely needed by anything except
TEX. (Dvi drivers generally read tfm files so that they can keep track of ex-
act glyph widths and fine-tune positioning accordingly, but they would get by
fairly well with only the information in the printer fonts.)

2.1.6 Property list files (pl files)

pl files are human-readable text files which contain all the font metric, kerning,
ligature, and other information needed to create a tfm file. You can convert
between the two file formats using tftopl and pltotf, which are standard utilities
in a TEX system.

2.1.7 Virtual font files (vf files)

These are binary data files in a format designed for use by TEX dvi drivers.
Their main purpose in life is to replace the raw font abstraction available in the
printer with one more convenient for TEX. These files are used by dvi driver
software only.

Dvi drivers use vf files to work out what should really be printed when you
ask for a particular character. Technically they are like subroutine libraries for
dvi drivers, with one subroutine for each character in the virtual font: when
the dvi driver sees a dvi command to set a character from a virtual font, it will
execute a sequence of dvi commands (the “mapcommands property” of this
character) that it reads in the vf file. You need not worry about the details of
this, as fontinst deals with them for you. Creating and using virtual fonts is
what this document is about, so don’t worry if this doesn’t make sense yet.
(After all, how much do you need to know about the inner workings of dvi
files to typeset and print TEX documents?)

Each vf file has a tfm file with the same name. To use a virtual font, you select
the tfm file as the font to use in your document. When the dvi driver comes
across this tfm file in the dvi file, it looks up the vf file and uses that to decide
what to do.

8

2.1.8 Virtual property list files (vpl files)

vpl files are human-readable text files which contain all the font metric, kern-
ing, mapping, and other information needed to create a vf and tfm pair.

vptovf will create a vf/tfm pair from a vpl file. vftovp will create a vpl from
a vf/tfm pair. vftovp also needs to be able to read all the tfm files that are
referred to by a vf to recreate the vpl – it looks at the checksums to verify that
everything’s okay.

2.1.9 Font definition files (fd files)

These are files containing commands to tell LATEX which tfm files to associate
with a request for a font using LATEX’s font selection commands.

For example, here is a small and edited part of the fd file supplied with PSNFSS

to allow you to use the Adobe Times font in T1 encoding:

\ProvidesFile{t1ptm.fd}

[1997/02/11 Fontinst v1.6 font definitions for T1/ptm.]

\DeclareFontFamily{T1}{ptm}{}

\DeclareFontShape{T1}{ptm}{m}{n} {<-> ptmr8t}{}

\DeclareFontShape{T1}{ptm}{m}{it}{<-> ptmri8t}{}

...

\DeclareFontShape{T1}{ptm}{b}{n} {<-> ptmb8t}{}

\DeclareFontShape{T1}{ptm}{b}{it}{<-> ptmbi8t}{}

...

What this means is: when you use LATEX to select the font family ptm in T1
encoding in the medium series (m) and normal shape (n), TEX uses the font
ptmr8t.tfm. Similarly, if you select bold italic, TEX uses ptmbi8t.tfm.

LATEX works out which fd file to load based on the current encoding and font
family selected. If you’ve selected T1 encoded ptm like this:

\fontencoding{T1}\fontfamily{ptm}\selectfont

LATEX loads the file t1ptm.fd (if it doesn’t exist, you’re in trouble). As you can
see above, this file contains information so that LATEX knows which tfm file to
use. So if you ask for, say, T1/ptm/b/it (T1 encoded Times-Roman, bold series,
italic shape), you get the font ptmbi8t.

You can find more about fd files and LATEX’s font selection commands at CTAN:
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/base/fntguide.texand
ftp://ftp.tex.ac.uk/tex-archive/info/simple-nfss.tex are both useful.

9

2.1.10 Font mapping files (map files)

These are files telling dvi drivers which printer fonts correspond to specific TEX
fonts (tfm files) – how a specific TEX font should be mapped onto a font concept
available in the dvi driver’s output format. Unlike tfm, fd, and vf files, which
tend to be found as soon as they’re in a suitable location (such as the current
directory), mapfiles typically need to be fully installed or selected through a
command-line option before any notice is taken of them.

The format of mapfiles varies from driver to driver, but a common format is
that of dvips, where each line is a separate entry (except lines that contain com-
ments). The first word of an entry is the TEX font name, the second word is the
basic printer font name, and remaining words provide additional information
(e.g., the name of the file in which the font is stored).

The default in most TEX systems is that fonts are assumed to be mf fonts unless
there is a specific map file entry which says otherwise. Hence if you’re trying
to use a new Type 1 font, but the dvi driver gives you an error message that
‘somefile.mf not found’, then the problem is most likely with the mapfiles.

2.2 Fonts and characters

The term ‘character’ (or just ‘char’) is frequently used in discussions of fonts,
but not always correctly, and when getting into the details of what fontinst does
it is necessary to keep the terminology straight.

Glyph A glyph is an image, often associated with one or several characters.
Some examples of glyphs are: ‘A’, ‘A’, ‘A’, ‘B’, ‘F’, ‘f’, ‘fi’, ‘˜’. Fonts are
collections of glyphs. Fontinst refers to glyphs by name.

Slot This is jargon for ‘a numbered position in a font’. (What is important is
the number, and that this number refers to a position in a font, but which
font is usually specified separately.) For typesetting, TEX identifies glyphs
as “slot n in font f”.

Character The modern definition is that a character is the smallest component
of written language that has semantic value. Speaking of a character, one
refers to the abstract meaning, rather than a specific shape.

Since fonts have often contained a unique glyph for each character and
each usable glyph has been assigned a particular slot, it is not uncommon
(in particular in older terminology) to see the three mixed up, usually so
that one says ‘character’ where one of the other two would have been
more correct. The TEX-related font file formats is no exception, as you
may see examples of elsewhere in this document.

Encoding There are really two different encoding concepts that one encoun-
ters when using fontinst. The differences are not great, and an encoding
of one kind often corresponds to an encoding of the other kind, but it is
not merely a matter of translation.

A LATEX encoding is a mapping from characters (or more formally LATEX
Internal Character Representations) to slots. In the OT1 encoding, ‘ø’ (or

10

more technically ‘\o’) maps to slot 28, whereas in the T1 encoding it maps
to slot 248. This kind of encoding affects what TEX is doing; dvi drivers
are not involved.

A font encoding (or encoding vector) is a mapping from slots to glyph
names. This is the kind of encoding that fontinst primarily deals with,
and also the kind of encoding that dvi drivers make use of. ot1.etx as-
sociates slot 28 with ‘oslash’, whereas t1.etx and EC.enc (one of several
to T1 corresponding encoding vectors that come with dvips) associates
slot 28 with ‘fi’.

LATEX encodings occur in fontinst only as names and only in relation to
fd files. It is unlikely that you will need to create one of your own. The
mappings defined by font encodings are on the other hand of great im-
portance and etx files are used to direct the generation of virtual fonts.
Advanced fontinst users may well find that they need to create new font
encodings to achieve their goals.

fontinst creates vpl and pl files from afm or pl files to map any glyph or com-
bination of glyphs in the original font files to any slot in the output font file.
There, isn’t that better? Off you go now. . .

The thing is that the average PostScript font comes in Adobe standard encod-
ing, which, for example, has the glyph dotless i ‘ı’ in slot 245. But TEX T1

encoding expects the glyph o dieresis ‘ö’ in that slot, and wants dotless i in
slot 25. So if you tried to use a raw PostScript font with TEX, any time you
tried to get an ‘ö’, you’d get a ‘ı’; and every time you tried to get a ‘ı’, you’d
get a blank, because Adobe standard encoding says that slot 25 is empty. The
process of dealing with this problem is called ‘re-encoding’, and is one thing
fontinst helps with.

2.3 What are verbatim, typewriter, and monowidth fonts?

The verbatim, typewriter, and monowidth concepts are common sources of
confusion for those who use fontinst to install fonts with LATEX; in particular
there are many misconceptions about the relation between them. The official
view (of which not much has actually been brought forward) is that these con-
cepts are really about three quite different things.

A font is a monowidth (monospaced, fixed-pitch) font if all glyphs in it have
exactly the same width. Some font formats make special provisions for such
fonts; the most notable example is the afm format, where a single CharWidth

keyword specifies the width for all glyphs in the font. Fontinst responds to this
by including the command

\setint{monowidth}{1}

in the mtx file generated from an afm, but that is everything that is hard-wired
into the program. That a font is monowidth is however something that one
should take note of when installing it for TEX, as it means many of the glyphs
in it have such a strange appearance that they are (pretty much) useless. The
endash is for example usually only half as long as the hyphen and the letters in

11

cmtt: The quick brown fox jumps over the lazy dog.

cmvtt: The quick brown fox jumps over the lazy dog.

Figure 1: Two typewriter fonts

TEX TEXT

TEX TEXT

WITHOUT

F-LIGATURES

TEX

TYPEWRITER

TEXT

non-italic

cmb10

cmbx5–12
cmbxsl10

cmdunh10

cmff10

cmfib8

cmr6–17

cmsl8–12
cmss8–17
cmssbx10

cmssdc10

cmssi8–17
cmssq8

cmssqi8

cmvtt10

cmcsc8–10
cmr5

cmsltt10

cmtcsc10

cmtt8–12

italic

cmbxti10

cmfi10

cmti7–12
cmu10

cmitt10

Table 1: “OT1-encoded” Computer Modern fonts, collected according to the
actual font encoding

ligature glyphs are only half as wide as normal letters. Many of the etx and
mtx files that come with fontinst contain special commands to avoid making
use of such degenerate glyphs.

That a font is a typewriter font really only means that it has a typewriterish
look about it. The two most familiar typewriter fonts are probably Computer
Modern Typewriter (cmtt) and Courier. Both of these fonts are monowidth,
but there is no absolute rule about this. One of the standard TEX fonts is for
example Computer Modern Variable-width Typewriter (cmvtt), which is not a
monowidth font, as Figure 1 shows.

The verbatim concept has very little to do with fonts at all; in LATEX it is con-
sidered to be a property of the environment (verbatim, macrocode, etc.) rather
than a property of the font. The connection there is with fonts is that the en-
coding of the font must contain visible ASCII (as defined in Appendix C of The
TEXbook) as a subset for the text to be rendered correctly. The cmtt family is
the only one amongst the original Computer Modern fonts which meets this
criterion and that is the primary grounds for the idea that these three concepts
should be connected. Today that reason is at best a very weak one, as all T1-
encoded fonts also meet the criterion of containing visible ASCII as a subset.

A circumstance which has probably added to the confusion is that OT1 is usu-
ally claimed to be one encoding. In reality the Computer Modern fonts that are
declared in LATEX as being OT1 display as many as five different encodings, as
shown in Table 1. Since most monowidth fonts are only used for setting ver-
batim text, there is some code in ot1.etx which automatically chooses a TEX

TYPEWRITER TEXT encoding for the font when the monowidth integer is set. The

12

only reason for this is the guess that this is what the user wanted.

3 Fontmaking commands

There are three main types of files that you may write to control what font-

inst does: command files (usually with suffix .tex), encoding definition files (suffix
.etx), and metric files (suffix .mtx). Command files directly tell fontinst to do
things, whereas the purpose of an encoding or metric file is more to store data,
but all three file types are technically sequences of TEX commands that fontinst

execute when reading the file. Normal TEX syntax rules apply in all three file
types, although a few commands may behave in unfamiliar ways.

Within the command file category, it is possible to discern certain subcategor-
ies. Most command files are written for one particular task, but some are com-
mon pieces that have been factored out from larger command files and are
merely meant to be \input where appropriate. (csc2x.tex in the fontinst dis-
tribution is an example of this latter kind.) One may also distinguish between
command files that are made for use with fontinst.sty command definitions
and command files that are made for use with finstmsc.sty command defin-
itions. This section documents the commands that are particular to the former
category, whereas the next section documents commands that are particular to
the latter.

3.1 Install commands

The core fontmaking takes place within a block of “install commands”. (This
name is a bit unfortunate since nothing is actually installed; rather some files
that need to be installed are generated.) Such blocks have the structure

\installfonts

〈install commands〉
\endinstallfonts

The 〈install commands〉 describe the fonts, glyphs and encodings used to build
fonts, whereas the purpose of the delimiting \installfontsand \endinstall-
fonts are rather to organise the writing of fd files.

\installfonts

\endinstallfonts

At \installfonts, fontinst’s internal list of fd files to generate are cleared. At
\endinstallfonts, fd files are written for those combinations of encoding and
font family that appeared in the 〈install commands〉.

Note for hackers. \installfonts, \endinstallfonts, and the individual install com-
mands between them also cooperate in a rather complicated grouping scheme to cache
glyphbases. This may interfere with non-fontinst commands in the 〈install commands〉. If
for example an assignment to some \tracing. . . parameter here does not seem to have
any effect, try making the assignment \global.

13

The most important 〈install command〉 is

\installfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This produces a TEX virtual font called 〈font-name〉. The 〈metrics-list〉 and the
〈etx-list〉 determine this font, whereas the other arguments specify how the fd

file will declare it for LATEX. The 〈encoding〉, 〈family〉, 〈series〉, and 〈shape〉 are
precisely the NFSS parameters. The 〈size〉 is either a shorthand declared by
\declaresize (see below), or is an fd size specification.

Like most fontinst lists, the elements in the 〈metrics-list〉 and 〈etx-list〉 are sep-
arated by commas (so-called comma-separated lists). In their simplest form,
the elements of these lists are file names (minus suffixes): mtx files in the
〈metrics-list〉 and etx files in the 〈etx-list〉. First the mtx files are processed to
build up a glyphbase, i.e., store definitions of glyphs and their metric proper-
ties in memory, and then the etx files are processed (several times) to select a
set of glyphs and write the corresponding information to a vpl file.

For example, to install the T1-encoded Times Roman font (using t1.etx and
latin.mtx), you say:

\installfont{ptmr8t}{ptmr8r,latin}{t1}

{T1}{ptm}{m}{n}{}

To install a OT1-encoded Times Roman font, with a scaled version of Symbol
for the Greek letters, you say:

\installfont{zptmrsy}{ptmr8r,psyr scaled 1100,latin}{ot1}

{OT1}{ptm}{m}{n}{}

As the second example indicates, there is more to the list items than just file
names. In the case of an metrics list item, the syntax permits the two forms

〈filename〉〈optional modifiers〉
\metrics 〈metric commands〉

where an 〈optional modifier〉 is one of New feature

v1.923

 scaled 〈rawscale factor〉
 suffix 〈glyph name suffix〉
 encoding 〈etx〉
 option 〈string〉

A list item may contain several such modifiers, but most commonly it does not
contain any. The 〈metric commands〉 are explicit metric commands, as described
in Section 7; this latter feature is meant for minor adjustments that you don’t
want to bother creating a separate mtx file for.

The 〈filename〉 above primarily refers to a file 〈filename〉.mtx, but that need not
always exist before executing the above command. If there exists a pl, afm,
or vpl file with the right name then that is first converted to a corresponding

14

mtx file. However, a special case occurs if there is an encoding modifier: this
forces conversion of a pl or vpl file even if an mtx file exists, and also forces
using the specified etx file when assigning glyph names to the slots of that
file. Normally the choice of etx file for such conversions to mtx is based on
\declareencodingdeclarations.

The scaled modifier sets the rawscale variable for the processing of that file.
This has the effect of scaling all raw glyphs from that file to 〈rawscale factor〉 per
milles of their previous size. The suffixmodified causes the 〈glyph name suffix〉
to be implicitly appended to all glyphs defined by this file. The option mod-
ifier adds the 〈string〉 to the list of “options” for this file. The \ifoption com-
mand can be used in the file to test whether a particular string has been sup-
plied as an option.

Note for hackers. In general, fontinst commands process comma-separated list ar-
guments by first splitting at commas and then fully expanding each item, but this
〈metrics-list〉 argument is an exception. This is first fully expanded (\edef) and then
split into items. The difference is that a macro used in this 〈metrics-list〉 argument can
expand to several list items, whereas a macro used in an ordinary comma-separated list
argument can only expand to (part of) a single list item.

The \metrics list items do however constitute an exception within this exception.
These list items are in their entirety protected from the initial full expansion, so you
don’t have to worry about peculiar fragility errors there.

The elements in the 〈etx-list〉 have fewer variants, but there is still a general
syntax

〈filename〉〈optional modifiers〉

The 〈optional modifier〉s permitted are:

 mtxasetx

 option 〈string〉

The option one is as for metric files. mtxasetx is probably only relevant for
use with \installrawfont (see below).

\installfontas{〈font-name〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

New feature

v1.912

This install command adds an fd entry for the 〈font-name〉, but it doesn’t
actually generate that font. Usually that font was generated by a previous
\installfont, and this is used to create additional entries for the font.

\installrawfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This is similar to \installfont except that it produces a TEX raw font as pl file
rather than a virtual font. Often a pl file with the specified name will already
exist when this command is called, and that will then be overwritten. These
two pl files will typically be somewhat different. The normal reason for us-
ing this command is that one wishes to “refine” the metrics of a font that was
generated by transformation commands.

15

For example, to install an 8r-encoded Times Roman raw font (using 8r.etx

and 8r.mtx), you say:

\installrawfont{ptmr8r}{ptmr8r,8r}{8r}

{8r}{ptm}{m}{n}{}

(The files referred to are, in order, ptmr8r.pl, ptmr8r.mtx,8r.mtx, and 8r.etx.)

The effect of a

〈filename〉 mtxasetx New feature

v1.923

in the 〈etx-list〉 is not that 〈filename〉.etx is read, but that 〈filename〉.mtx is read.
The interpretation of the commands in this file is however not the custom-
ary, and almost the only thing paid attention to is the correspondence between
glyph names and slot numbers that is provided by the \setrawglyph and
\setscaledrawglyph commands; this correspondence is treated as if it was
given by \setslot . . . \endsetslot commands in an etx file. This is however
only guaranteed to work with transformable metric files.

The purpose of this feature is to simplify installation of fonts with very special
encodings, such as “Dingbat” or “Pi” fonts. Instead of creating an etx file,
which would probably only be useful with that particular font, one can make
use of the fact that the interesting information is anyway available in the mtx

file. To install Zapf Dingbats in their default encoding, one can thus say

\installrawfont{pzdr}{pzdr}{pzdr mtxasetx}

{U}{pzd}{m}{n}{}

Unlike the case with \installfont, which actually creates a real (although
virtual) font, \installrawfont can only create the metrics for a font. The dvi

driver will require some other kind of implementation of this font, usually an
entry in some map file (e.g. psfonts.map, in the case of dvips) that links the
TEX font name to e.g. a PostScript font name and file. (Many dvi drivers are
configured in such a way that they, without such a map file entry, will call
Metafont with the font name and thereby raise a sequence of error messages
about a .mf that doesn’t exist. These results are often rather confusing.)

\installfamily{〈encoding〉}{〈family〉}{〈fd-commands〉}

This tells fontinst to write an fd file for the given combination of encoding and
family, and clears the internal list of entries to put in that file. \installfamily
commands usually come first in each block of 〈install commands〉.

For example, if you intend to produce a T1-encoded Times family of fonts, you
say:

\installfamily{T1}{ptm}{}

The 〈fd-commands〉 are executed every time a font in that family is loaded, for
example to stop the Courier font from being hyphenated you say:

16

\installfamily{T1}{pcr}{\hyphenchar\font=-1}

In more recent versions of fontinst, the \installfamily command is only ne-
cessary if you want the 〈fd-commands〉 argument to be nonempty, but it doesn’t
hurt to make it explicit.

Note for hackers. The 〈fd-commands〉 argument is tokenized with the current catcodes
and written to file without expansion. In particular this means that spaces will be inser-
ted after all control sequences whose names consists of letters, which can be unexpected
if you intend to make use of control sequences whose names contain @ characters.

One way around this is to use \fontinstcc and \normalcc to temporarily switch
catcodes around the \installfamily command.

3.2 Transformation commands

\transformfont{〈font-name〉}{〈transformed font〉}

This makes a raw transformed font, for example expanded, slanted, condensed
or re-encoded. It is the responsibility of the device driver to implement this transform.
Each \transformfont command writes out an mtx file and a raw pl file for
〈font-name〉.

The following commands are valid 〈transformed font〉s:

\fromafm{〈afm〉}
\fromany{〈whatever〉}
\frompl{〈pl〉}
\fromplgivenetx{〈pl〉}{〈etx〉}
\frommtx{〈mtx〉}

These read the metrics of the font which is about to be transformed from an
external file. \fromafm, \frompl, and \fromplgivenetx write out an mtx file
corresponding to the afm or pl file. In addition, \fromafm also writes out
a raw pl file, containing just the glyph metrics but no kerning information.
\fromplgivenetx permits specifying which encoding file to use when asso-
ciating glyph names to slots, whereas \frompl tries to guess this from the
CODINGSCHEME property of the pl file. \fromany looks for a file in any of the
formats (in the order mtx, pl, afm) and behaves as the first \from. . . for which
it found a file.

A 〈transformed font〉 may also be one of the following:

\scalefont{〈integer expression〉}{〈transformed font〉}
\xscalefont{〈integer expression〉}{〈transformed font〉}
\yscalefont{〈integer expression〉}{〈transformed font〉}
\slantfont{〈integer expression〉}{〈transformed font〉}

This applies a geometric transformation to the font metrics of 〈transformed font〉.
The scale factor or slant factor are given in units 1000 to the design size. Typical
examples are 167 for slanted fonts (a slant of 1

6
) or 850 for condensed fonts

(shrunk to 85% of their natural width).

17

The final case of a 〈transformed font〉 is:

\reencodefont{〈etx〉}{〈transformed font〉}

This rearranges the encoding vector of 〈transformed font〉 to match the encoding
given by the etx file.

For example, to create an oblique, 8r-encoded version of Adobe Times called
ptmro8r you say:

\transformfont{ptmro8r}{

\reencodefont{8r}{

\slantfont{167}{\fromafm{ptmr8a}}

}

}

This will create ptmr8a.mtx, ptmr8a.pl, ptmro8r.mtx and ptmro8r.pl, which
can then be used as raw fonts in \installfont commands. The equivalent
transformation can also be achieved in two steps:

\transformfont{ptmr8r}{\reencodefont{8r}{\fromafm{ptmr8a}}}

\transformfont{ptmro8r}{\slantfont{167}{\frommtx{ptmr8r}}}

This will create ptmr8a.mtx, ptmr8a.pl, ptmr8r.mtx, ptmr8r.pl, ptmro8r.mtx
and ptmro8r.pl.

You will have to inform your device driver about the transformed font, using
the syntax appropriate for that driver. For example, in dvips you add a line to
psfonts.map:

ptmro8r Times-Roman ".167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

See Section 4 and Subsection 11.4 for details on how to generate such lines
automatically.

3.3 The \latinfamily command

\latinfamily{〈family〉}{〈commands〉}

This command is by itself an entire \installfonts . . . \endinstallfonts

block, automatically doing \transformfonts, \installfonts, and \install-
rawfonts depending on which base font metrics it finds. It generates virtual
fonts in the T1, OT1, and TS1 encodings.

There is really much to much about this command for it to be described in full
here. Please see other available documentation.

\fakenarrow{〈width factor〉}

This command makes \latinfamily fake ‘narrow’ fonts in the family it is
working on, by x-scaling the normal fonts. The 〈width factor〉 is the scale factor
to use.

18

3.4 Reglyphing commands

“Reglyphing” is an mtx file transformation that changes glyph names but
leaves the slot numbers and metrics as they were; optionally it may drop some
of the metric commands. See Subsection 11.3 for an introduction to this.

Like installation commands, reglyphing commands are preferably placed in a
block between two delimiter commands:

\reglyphfonts

〈reglyphing commands〉
\endreglyphfonts

The purpose of these delimiter commands is to delimit the scope in which the
various declarations made take effect. After \endreglyphfont, you’re back to
the “clean” state that existed before the \reglyphfont.

\reglyphfont{〈destination font〉}{〈source font〉}

This is the only command that actually does something; all the other com-
mands simply set parameters for the processing carried out here. What the
command does is that it reads the 〈source font〉 (which may be in mtx, pl, afm,
or vpl format, but will be converted to mtx before it is read for reglyphing)
and writes each command back to the 〈destination font〉 (in mtx format only),
but often with some subtle modifications.

It should be observed that the “destination font” generated by this command is
not a real font, but just an mtx file. If that mtx file contains raw glyph defintions
(\setscaledrawglyph commands) then these will refer to the 〈source font〉, so
that is all a dvi driver needs to be informed about.

\renameglyph{〈to〉}{〈from〉}
\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}
\killglyph{〈glyph〉}
\killglyphweighted{〈glyph〉}{〈weight〉}

The \renameglyph and \renameglyphweighted commands cause each refer-
ence to the glyph 〈from〉 in the source font to be replaced by a reference to the
glyph 〈to〉 in the destination font. Thus if the source font contains a command
that sets a glyph with the name 〈from〉, then this will in the destination font
be changed to a command that sets a glyph with the name 〈to〉, but with the
same metrics, slot, and base font name as in the source font. Kerns are similarly
adjusted to be for the 〈to〉 glyph.

There is also a “weight” associated with each command being copied from
source font to destination font, and if that weight is too small then the com-
mand will be omitted from the destination font. The weight of a command is
the sum of the weights of all glyphs mentioned in that command. A glyph for
which no settings have been made has weight 0. A glyph name which is the
〈from〉 of a \renameglyphweightedor the 〈glyph〉 of a \killglyphweightedhas
the 〈weight〉 specified there. A 〈from〉 glyph of a \renameglyph gets the weight
stored in the renameweight integer variable (by default 1) and the 〈glyph〉 of a

19

\killglyph gets the weight stored in the killweight integer variable (by de-
fault −10). It is this large negative weight that makes \killglyph “kill” glyphs.

The weight condition for keeping a command is given by the \iftokeep

command, which is regarded as a fontinst command variable (see Section 9).
The default definition is to keep things with non-negative weight (typically
everything that doesn’t involve a glyph that has been killed), but for example
csckrn2x.tex redefines it to only keep things with positive weight (typically
everything involving at least one glyph that has been renamed and not any
that has been killed).

\offmtxcommand{〈command〉}
\onmtxcommand{〈command〉}

Turning a command ‘off’ using \offmtxcommandmeans no such commands are
to be copied to a destination font by \reglyphfont. Turning it back ‘on’ using
\onmtxcommand restores it to normal, i.e., whether it is copied depends on the
weight of the command.

Note for hackers. \offmtxcommand and \onmtxcommand are wrappers around the general-
purpose \offcommand and \oncommand commands (see Subsection 5.1). The wrapping
makes the general commands to act on a family of internal macros, namely those which
are used by \reglyphfont as definitions of the transformable metric commands.

3.5 Miscellaneous settings

\substitutesilent{〈to〉}{〈from〉}
\substitutenoisy{〈to〉}{〈from〉}

This declares a LATEX font substitution, that the series or shape 〈to〉 should be
substituted if necessary by the series or shape 〈from〉. Font substitutions hap-
pen at \endinstallfonts time, and cause font declarations using sub or ssub
to be added to the fd files being written.

\substitutenoisy means that a warning will be given when the substitution
is made by LATEX. \substitutesilentmeans that LATEX should not warn when
the font substitution is made.

For example, to say that the series bx can be replaced by the series b (a request
for series bx selects a font with actual series b), you say:

\substitutesilent{bx}{b}

To say that the shape ui can be replaced by the shape it (a request for shape
ui selects a font with actual shape it), you say:

\substitutenoisy{ui}{it}

The following weight substitutions are standard:

20

\substitutesilent{bx}{b}

\substitutesilent{b}{bx}

\substitutesilent{b}{sb}

\substitutesilent{b}{db}

\substitutesilent{m}{mb}

\substitutesilent{m}{l}

The following shape substitutions are standard:

\substitutenoisy{ui}{it}

\substitutesilent{it}{sl}

\substitutesilent{sl}{it}

In order to disable a default substitution, use the 〈from〉 for both arguments.

The \installfontas command should be considered as an alternative to using
font substitution, as it gives much finer control over what fd entries will be
made.

\declaresize{〈size〉}{〈fd-size-range〉}

This declares a new size shorthand, and gives the fd size specifications for it.
For example, fontinst.sty declares the following sizes:

\declaresize{}{<->}

\declaresize{5}{<5>}

\declaresize{6}{<6>}

\declaresize{7}{<7>}

\declaresize{8}{<8>}

\declaresize{9}{<9>}

\declaresize{10}{<10>}

\declaresize{11}{<10.95>}

\declaresize{12}{<12>}

\declaresize{14}{<14.4>}

\declaresize{17}{<17.28>}

\declaresize{20}{<20.74>}

\declaresize{25}{<24.88>}

The first of these is what gives an empty 〈size〉 argument for the font installation
commands the meaning “all sizes”.

\declareencoding{〈string〉}{〈etx〉}

This declares which etx file corresponds to which CODINGSCHEME string, and is
used when reading metrics in pl format. For example, fontinst.sty declares
the following encoding strings:

\declareencoding{TEX TEXT}{ot1}

\declareencoding{TEX TEXT WITHOUT F-LIGATURES}{ot1}

\declareencoding{TEX TYPEWRITER TEXT}{ot1tt}

21

\declareencoding{TEX MATH ITALIC}{oml}

\declareencoding{TEX MATH SYMBOLS}{oms}

\declareencoding{TEX MATH EXTENSION}{omx}

\declareencoding{EXTENDED TEX FONT ENCODING - LATIN}{t1}

\declareencoding{TEX TEXT COMPANION SYMBOLS 1---TS1}{ts1}

\declareencoding{TEXBASE1ENCODING}{8r}

\declareencoding{TEX TYPEWRITER AND WINDOWS ANSI}{8y}

3.6 Low-level conversion commands

The following commands are the low-level commands which carry out vari-
ous conversions. There’s usually no need to bother about them unless you are
hacking fontinst, but you may see them in the header comments of files fontinst

generates, so here’s a description of what they do and when they are used.

\afmtomtx{〈afmfile〉}{〈mtxfile〉}
\generalpltomtx{〈plfile〉}{〈mtxfile〉}{〈plsuffix〉}{〈opt-enc〉}

These handle importing font metric data to the fontinst native mtx format.

\afmtomtx converts metrics in afm format. It uses the minimumkern integer
variable and the \slanteditalcorr and \uprightitalcorr command vari-
ables.

\generalpltomtx converts metrics in pl or vpl format. If the 〈opt-enc〉 string
expression is nonempty then that is taken as the name of an etx file that assigns
glyph names to the slots in the font.

\mtxtomtx{〈source MTX〉}{〈destination MTX〉}

This is the heart of the \transformfont command. It makes use of the x-scale,
y-scale, and slant-scale integer variables, and the etx-name string variable.

\mtxtopl{〈mtxfile〉}{〈plfile〉}

This converts mtx metrics to pl format; more precisely it generates CHARACTER
property lists for \setrawglyph and \setscaledrawglyph commands. Kern-
ing information is ignored.

The command is used immediately after an \afmtomtx or \mtxtomtx. The in-
variant is that if there can be some \setrawglyphor \setscaledrawglyphcom-
mand which refers to a glyph in some font, then there must also be a pl file with
metrics for that font.

\etxtovpl{〈encoding list〉}{〈vplfile〉}
\etxtopl{〈encoding list〉}{〈plfile〉}

These are the cores of \installfont and \installrawfont respectively. They
don’t really convert files—it’s more like generating a vpl or pl under the con-
trol of the etx.

22

3.7 Other

The following commands also belong in this section, but don’t belong to any
of the major groups.

\recordtransforms{〈filename〉}
\endrecordtransforms

See Subsection 11.4 for an explanation of how these are used.

\NOFILES

This command switches off file generation, and causes fontinst to only gener-
ate empty files. It only affects the user level commands, so it is primarily of
use when debugging commands that build on these, such as for example the
\latinfamily command.

4 Mapmaking commands

The commands described in this section are for use with command files that
input finstmsc.sty.

4.1 Mapfile command reference

For an introduction to making map file entries, see Subsection 11.4.

\adddriver{〈driver name〉}{〈fragment file name〉}

This opens the file 〈fragment file name〉 for writing mapfile entries to. The
〈driver name〉 selects the format of these entries. Note that if the 〈fragment file name〉
does not include a suffix, it will get the suffix tex, which is probably not what
you want.

\makemapentry{〈TEX font name〉}

This causes a mapfile entry for the specified font to be written to all files cur-
rently open for receiving mapfile entries. These commands are usually auto-
matically generated by fontinst.

\donedrivers

This closes all files open for receiving mapfile entries.

23

4.2 Drivers

The 〈driver name〉s that may be used with \adddriver are:

dvips

The dvips driver. The mapfiles generated are useful also with pdfTEX, but one
does not always use the exact same file for both; sometimes they require differ-
ent settings.

dvipdfm

The dvipdfm dvi-to-pdf driver. Not much tested, but appears to work.

pltotf New feature

v1.915

Not really a dvi driver. The file that is generated is a shell script of pltotf
commands for converting precisely those pl files which are needed to tfm files
(fontinst generally generates also a bunch of pl files that in the end turn out to
be unnecessary). The TFMfileprefix variable can be used to specify a path to
the directory where these files should be placed.

debug

Not a dvi driver either, but for each base font a report on the information that
was available. Useful if you need to write the driver file yourself.

Note for hackers. Creating a new driver 〈foo〉 is mostly a matter of suitably defining the
\make_〈foo〉 command.

4.3 Configuration commands

The following commands configure the generation of mapfile entries, mostly
with respect to how various pieces of information are deduced from other
pieces.

\AssumeAMSBSYY

\AssumeBaKoMa

\AssumeMetafont

These commands change what the map file writer does when it needs to know
the PostScript name for a font but only knows the TEX name. This usually
happen when the metrics came from a pl file.

\AssumeAMSBSYY tells it to uppercase the TEX name and use that as PostScript
name; this is correct for the AMS/Blue Sky/Y&Y conversions of the Computer
Modern fonts.

24

\AssumeBaKoMa tells it to lowercase the TEX name and use that as PostScript
name; this is correct for the BaKoMa conversions of the Computer Modern
fonts.

\AssumeMetafont tells it to ignore base fonts for which no PostScript name is
known, on the assumption that they are mf fonts.

\AssumeLWFN

This commands changes what the map file writer does when it needs to know
the name of the file in which a PostScript font is stored. The file name is con-
structed from the PostScript font name using the 5+3+3+ · · · convention used
in (Classic) Mac OS.

By default fontinst uses as PostScript font file name the TEX name of the font
(i.e., the name of the source afm or whatever file) and appends to that the con-
tents of the PSfontsuffix string.

For fonts which fit neither of these schemes, one can give individual specifica-
tions using the command

\specifypsfont{〈PS font name〉}{〈actions〉}

Note that the font is here identified using its PostScript font name, not the TEX
font name.

An 〈action〉 is one of1

\download{〈file〉}
\fulldownload{〈file〉}

New feature

v1.928

where 〈file〉 is a file to download (‘download’ typically means “include in the
generated PostScript output or equivalent”). The difference between \download

and \fulldownload have to do with how partial downloading (subsetting) of
fonts should be handled. \downloadmeans use the driver’s defaults (often set-
table via command line options) for this. \fulldownload means don’t subset:
always include the full font, if fontinst knows how to express this in a map file
entry for this particular driver.

If FooBar-Regular is a non-subsettable font, then you may specify this to font-

inst through a command like

\specifypsfont{FooBar-Regular}{\fulldownload{foobar.pfb}}

To specify that the PDF “base 14” fonts do not require downloading, one would
say

\specifypsfont{Courier}{}

\specifypsfont{Courier-Bold}{}

\specifypsfont{Courier-BoldOblique}{}

1Additional actions can be added in the future, if there is a need for them. It is not a problem if
not all driver can support an action, since all actions typically default to \download.

25

\specifypsfont{Courier-Oblique}{}

\specifypsfont{Helvetica}{}

\specifypsfont{Helvetica-Bold}{}

\specifypsfont{Helvetica-BoldOblique}{}

\specifypsfont{Helvetica-Oblique}{}

\specifypsfont{Times-Roman}{}

\specifypsfont{Times-Bold}{}

\specifypsfont{Times-Italic}{}

\specifypsfont{Times-BoldItalic}{}

\specifypsfont{Symbol}{}

\specifypsfont{ZapfDingbats}{}

When more than one action appears in the 〈actions〉 argument, then it is usu-
ally the last that actually creates the font, whereas the others contain resources
needed by the last.

\declarepsencoding{〈etx〉}{〈postscript name〉}{〈action〉}

This command specifies how reencoding using a particular etx file should be
performed by the driver. The 〈postscript name〉 is the PostScript name of the
encoding vector used, whereas the 〈action〉 is the action (as above) that the
driver needs to perform to make the encoding known to whatever it is that
it is serving (often a PostScript interpreter).

Usually the right thing to do is to \download an enc file, but there is also an
action

\encodingdownload{〈file〉} New feature

v1.931

which tries to express the fact that the 〈file〉 contains an encoding vector. In the
case of dvips this is only necessary if (i) the font is being subsetted and (ii) the
〈file〉 name is nonstandard (does not end with enc).

\providepsencoding{〈etx〉}{〈postscript name〉}{〈action〉} New feature

v1.931

This command is the same as \declarepsencoding, except that it doesn’t do
anything if an encoding has already been declared for this 〈etx〉. It is used for
autogenerated encoding declarations, so that these will not override one issued
by the user.

\storemapdata{〈TEX font name〉}{〈source〉}{〈transforms〉}

This records information about how the font named 〈TEX font name〉 was gen-
erated. Such commands are usually found in the file of recorded transforms. If
a font is encountered for which no information has been stored, then the cor-
responding mtx file will be sourced, looking for a \storemapdata command
there.

A 〈source〉 is one of

26

\fromafm{〈afm name〉}{〈PS name〉}
\frompl{〈pl name〉}
\frommtx{〈mtx name〉}
\fromvpl

Note that several of them have a different syntax and meaning than they do in
fontmaking command files.

A 〈transform〉 is one of

\reencodefont{〈etx〉}
\reglyphfont

\transformfont{〈x-scale〉}{〈slant-scale〉}

Note that all of these have a different meaning than they do in fontmaking
command files.

\debugvalue{〈name〉}

This adds a value to the list of those that are reported by the debug driver.
Example:

\debugvalue{PS_font_file}

4.4 Basic conversion commands

Some of the basic “convert an X file to a Y file” commands in fontinst are not
useful as part of a fontmaking run, and are available only in finstmsc.sty to
conserve some memory.

\enctoetx{〈encfile〉}{〈etxfile〉}

This reads the file 〈encfile〉.enc which should be simple PostScript code defin-
ing a PostScript encoding vector and generates a corresponding rudimentary
fontinst encoding file 〈etxfile〉.etx. It’s a basic “import encoding to fontinst”
command.

\etxtoenc{〈etxfiles〉}{〈encfile〉} New feature

v1.911

This does the opposite of \enctoetx; the information in the etx files that is
converted is the correspondence between slots and glyph names. The 〈etxfiles〉 New feature

v1.927argument is a comma-separated list of encoding files which are superimposed
to generate the PostScript encoding. The first \setslot for a particular slot is
the one which decides which glyph will be placed there.

\etxtocmap{〈etxfile〉}{〈cmapfile〉} New feature

v1.928

This reads an etx file and generates a corresponding ToUnicode CMap file; the
information that is converted is the map from slot numbers to \Unicode code
points.

27

5 General commands

This section describes commands and mechanisms that are the same in all file
types. Commands that are particular for one type of file are described in sub-
sequent sections.

5.1 Variables

Many (but not all) of the activities fontinst perform can be understood as either
“setting variables” or “formatting and writing to file data stored in some vari-
able”. The accessing of variables is an important aspect of how fontinst works.

Variables come in different types and variables of different types live in differ-
ent namespaces; \int{foo}, \str{foo}, and \dim{foo} refer to three different
variables which are all named foo. Variables are either set or not set. Unless
the contrary is stated explicitly, each variable defaults to not being set. It is an
error to access the value of a variable that has not been set. Fontinst variable as-
signments are as a rule local, i.e., will be undone when the enclosing TEX group
is ended. Most command file commands that cause files to be read will begin
a group before reading the file(s) and end the group at some point after having
read them.

Taking string variables as an example, there are three commands for changing
a string variable:

\setstr{〈name〉}{〈string expression〉}
\resetstr{〈name〉}{〈string expression〉}
\unsetstr{〈name〉}

The \resetstr command unconditionally sets the string variable 〈name〉 to the
full expansion of the 〈string expression〉. The \unsetstr command uncondition-
ally renders the string variable 〈name〉 unset. If the the string variable 〈name〉 is
currently unset then the \setstr command will set it to the full expansion of
the 〈string expression〉, but if it already is set then \setstr does nothing.

This pattern with three commands, one \set. . . which only sets unset vari-
ables, one \reset. . . which sets variables regardless of whether they have been
set or not, and one \unset. . . which unsets variables is recurring in fontinst.
Variables are most commonly set using some \set. . . command; this has the
effect that the first command to try to set a variable is the one which actually
sets it.

If \set. . . is the command for setting the value of a variable, the command
for getting that value has the same name without the set part, e.g., \setint–
\int, \setglyph–\glyph, etc. (Notable exceptions are \setkern, where the
“get” command is called \kerning, and \setcommand, where no separate “get”
command is needed.) There are typically also conditionals for testing whether
variables are set, and these take the form \ifis. . .{〈name〉}\then.

28

\setdim{〈dim〉}{〈dimension〉}
\setint{〈int〉}{〈integer expression〉}
\setstr{〈str〉}{〈string expression〉}

If the dimension variable 〈dim〉 is currently undefined, it is defined to be the
current value of 〈dimension〉.

If the integer variable 〈int〉 is currently undefined, it is defined to be the current
value of 〈integer expression〉.

If the string variable 〈str〉 is currently undefined, it is defined to be the current
value of 〈string expression〉.

\setcommand{〈command〉}〈parameter text〉{〈replacement text〉}

If the command 〈command〉 is currently undefined, it is defined to grab para-
meters as specified by the 〈parameter text〉 and then expand to the 〈replacement text〉.
This uses the same syntax for parameters as the TEX \def command.

Number of parameters 〈parameter text〉
0 (empty)
1 #1

2 #1#2

3 #1#2#3

and so on.

Some examples:

\setcommand\lc#1#2{#2}

\setcommand\lc#1#2{#1small}

With the first definition, \lc{A}{a} expands to a, but with the second it ex-
pands to Asmall.

\resetdim{〈dim〉}{〈dimension〉}
\resetint{〈int〉}{〈integer expression〉}
\resetstr{〈str〉}{〈string expression〉}

The dimension variable 〈dim〉 is defined to be the current value of 〈dimension〉.

The integer variable 〈int〉 is defined to be the current value of 〈integer expression〉.

The string variable 〈str〉 is defined to be the current value of the 〈string expression〉.
(\resetstr mostly boils down to a TEX \edef command.)

\resetcommand{〈command〉}〈parameter text〉{〈replacement text〉}

The command 〈command〉 is defined to grab parameters as specified by the
〈parameter text〉 and then expand to the 〈replacement text〉. This is a synonym
for the TEX \def command.

29

\unsetdim{〈dim〉}
\unsetint{〈int〉}
\unsetstr{〈str〉}
\unsetcommand{〈command〉}

Makes 〈dim〉, 〈int〉, 〈str〉, or 〈command〉 an undefined dimension, integer, string
or command.

\offcommand{〈command〉}
\oncommand{〈command〉}

New feature

v1.900

\offcommand turns off a command, i.e., it redefines it to do nothing (while still
taking the same number of arguments). \oncommand turns a command back on,
i.e., it restores the definition the command had before a previous \offcommand.
Using \offcommand on a command that is already off or \oncommand on a com-
mand that is not off has no effect.

5.2 Argument types and expansion

Most arguments of fontinst commands belong to one of the following six cat-
egories:

• integer expressions,

• string expressions,

• comma-separated lists of string expressions,

• dimensions,

• commands (i.e., a single TEX control sequence), and

• code (zero or more commands in sequence, each of which may have ar-
guments of its own).

Integer expressions are explained in Subsection 5.3 below.

The most common form of a string expression is simply a sequence of character
tokens, but any balanced text which expands to such a sequence of tokens is
legal. Several of the standard etx files use macros in string expressions to make
glyph names to some extent configurable. Besides such custom macros, the
following fontinst commands may be used to access variable values inside a
string expression

\strint{〈int〉}
\str{〈str〉}
\dim{〈dim〉}

Incidentally, these 〈int〉, 〈str〉, and 〈dim〉 are themselves string expressions (for
the names of integer, string, and dimen respectively variables).

Dimensions are simply TEX 〈dimen〉s; their use is rather limited. Fontinst does
not provide for any sort of “dimen expressions”. Most actual lengths are ex-
pressed as integer expressions, in AFM units (1/1000 of the font size).

30

Common to integer expressions, string expressions, and dimensions is that
these argument types get expanded during evaluation (in the case of string
expressions, this expansion is the evaluation), which means one can use mac-
ros in arguments of these types. Command arguments do not get expanded—
they are mainly used with commands that modify the definitions of other com-
mands.

Comma-separated lists of string expressions are first split at commas (without
prior expansion) and each element is then treated as a string expression (i.e.,
gets expanded). (As remarked elsewhere, the 〈metrics-list〉 argument of \installfont
is not properly a comma-separated list of string expressions, even though it
may look like one.)

Code arguments are generally expanded, but one should not make any pre-
sumptions about when this will happen, and similarly not assume that code
placed in such an argument will only be executed once. It is typically safe to
use a macro in a code argument if the definition of that macro stays the same
throughout, but one should otherwise not use any other commands in code
arguments than those explicitly documented as legal there.

Finally, there are command arguments which do not fall into any of these cat-
egories. For these, one cannot give any rules: they might get expanded, but it
could also happen that they won’t.

5.3 Integer expressions

The integer expressions provide a user-friendly syntax for TEX arithmetic. They
are used to manipulate any integers, including glyph dimensions (which are
given in AFM units, that is 1000 to the design size). TEX pl fonts have their
dimensions converted to AFM units automatically.

The integer expressions are:

〈number〉

Returns the value of a TEX 〈number〉 (as explained in The TEXbook). Typical
examples of this kind of integer expression are 0, 1000, 538, -20, "9C, ’177, etc.

\int{〈int〉}

Returns the value of the integer variable 〈int〉.

\width{〈glyph〉}
\height{〈glyph〉}
\depth{〈glyph〉}
\italic{〈glyph〉}

Returns the width, height, depth, or italic correction of the glyph variable
〈glyph〉.

31

\kerning{〈left〉}{〈right〉}

Returns the kerning between the 〈left〉 and 〈right〉 glyphs. Unlike other types
of variable accesses, where it is an error to access something that has not been
explicitly set, this command returns 0 if no kern has been set between the two
glyphs.

\neg{〈integer expression〉}
\add{〈integer expression〉}{〈integer expression〉}
\sub{〈integer expression〉}{〈integer expression〉}
\max{〈integer expression〉}{〈integer expression〉}
\min{〈integer expression〉}{〈integer expression〉}
\mul{〈integer expression〉}{〈integer expression〉}
\div{〈integer expression〉}{〈integer expression〉}
\scale{〈integer expression〉}{〈integer expression〉}
\half{〈integer expression〉}
\otherhalf{〈integer expression〉}

These commands evaluate their argument(s) and perform some arithmetic op-
erations on the result(s).

\neg returns the negation of the 〈integer expression〉.

\add returns the sum of the two 〈integer expression〉s.

\sub returns the first 〈integer expression〉 minus the second.

\max returns the maximum of the two 〈integer expression〉s.

\min returns the minimum of the two 〈integer expression〉s.

\mul returns the product of the two 〈integer expression〉s.

\div returns the first 〈integer expression〉 divided by the second.

\scale returns the first 〈integer expression〉 times the second, divided by 1000.
\scale does better rounding than the corresponding combination of \mul and
\div.

\half returns half the 〈integer expression〉. It does better rounding than \scale{〈integer expression〉}{500}
or \div{〈integer expression〉}{2}.

\otherhalf returns the “other half” of the 〈integer expression〉, i.e., the sum of
\half something and \otherhalf the same thing is that thing back.

5.4 Conditionals and loops

Fontinst has a rather extensive family of conditionals (\ifs), and as of late also
some convenient loop commands. The most common forms of a fontinst con-
ditional are

\if. . . 〈argument(s)〉\then 〈then branch〉 \Fi
\if. . . 〈argument(s)〉\then 〈then branch〉 \Else 〈else branch〉 \Fi

i.e., fontinst uses PlainTEX style conditionals (with else and fi control sequences)
rather than LATEX style conditionals (with separate arguments for the two

32

branches). Every \if. . . command can be thought of as testing some condi-
tion. If the condition is true then the 〈then branch〉 will be executed, but not
the 〈else branch〉 (if there is one). If the condition is false then the 〈then branch〉
will not be executed, but if there is an 〈else branch〉 then that will be executed.
Conditionals may be nested (i.e., occur in the then or else branch).

Note for hackers. The \then is not just syntactic sugar, but a functional part of those
conditionals which take arguments. Its purpose is to look like an \if to TEX when the
conditional occurs in a skipped branch of another conditional.

The most common conditionals are those which test if a variable is set.

\ifisint{〈int〉}\then
\ifisdim{〈dim〉}\then
\ifisstr{〈str〉}\then
\ifiscommand{〈command〉}\then

These cause the following 〈then branch〉 to be executed if the specified variable
is set, and the 〈else branch〉 to be executed if the variable is not set. The 〈int〉,
〈dim〉, and 〈str〉 are string expressions for the names of an integer, dimension,
and string respectively variable. The 〈command〉 is the actual control sequence
(command variable) that should be tested.

\ifisglyph{〈glyph〉}\then

This similarly tests if a glyph (also a variable of a kind) is set in the current
glyph base. The glyph name 〈glyph〉 is a string expression.

\ifareglyphs{〈glyph list〉}\then New feature

v1.917

This command tests whether all the glyphs in the 〈glyph list〉 (a comma-separated
list of string expressions) are set in the current glyph base. If one of the glyphs
is not set then the condition is false.

\ifnumber{〈integer expression〉}〈rel〉{〈integer expression〉}\then New feature

v1.900

The 〈rel〉 is one of <, =, and >. This command evaluates the two 〈integer expression〉s
and then tests whether the specified relation holds between their values.

\ifiskern{〈glyph1〉}{〈glyph2〉}\then New feature

v1.900

This tests whether a kern has been set with 〈glyph1〉 on the left and 〈glyph2〉 on
the right (both arguments are string expressions). This is almost the negation
of

\ifnumber{\kerning{〈glyph1〉}{〈glyph2〉}}={0}\then

but \ifiskern can distinguish the case that an zero kern has been set (true)
from the case that no such kern has been set (false), which \kerning can not.
It is however unlikely that this distinction would ever be of use in a practical
situation.

33

\ifoption{〈string〉}\then New feature

v1.924

Test whether 〈string〉 (a string expression) is among the current list of options.
This list is by default empty, elements are added using optionmodifiers (cf. the
description of \installfont), and the list is cleared for each new file for which
one can specify options.

\Else \Fi New feature

v1.909

For fontinst, these two control sequences are precisely the same as the TEX prim-
itives \else and \fi, but things are a bit more complicated in fontdoc. The
mechanism in fontdoc that allows it to present both branches of the conditional
in the typeset output requires that \Else and \Fi generate typeset output. See
also the \showbranches fontdoc command.

Note for hackers. Before \Else and \Fi were introduced, the TEX primitives \else and
\fi were used instead for fontinst conditionals. Back then, fontdoc defined all condi-
tionals to expand to \iftrue.

It used to be the case that all conditionals would be fully expandable (which in
particular would have made it possible to use them in string expressions), but that is no
longer the case.

The fontdoc formatter for visible branches treats an \Else immediately fol-
lowed by an ‘if’ as an ‘else if’, i.e., it assumes the entire else branch consists
of the conditional begun at that ‘if’ and leaves out one level of indentation.
When that is not the case, you will upon typesetting get a LATEX error about
\begin{IfBranchDummy} and \end{IfBranch}. In that case you need to help
the formatter by placing something between the \Else and the ‘if’; as it turns
out leaving an empty line there is sufficient (although just a single newline is
not).

\for(〈name〉){〈start〉}{〈stop〉}{〈step〉} 〈body〉 \endfor(〈name〉) New feature

v1.901

will cause the 〈body〉 code to be repeated some number of times. How many
depends on the values of 〈start〉, 〈stop〉, and 〈step〉, which are integer expres-
sions.

As a precaution, the 〈body〉 is not allowed to contain any empty lines (\par
tokens). If you want to have the visual separation (for sakes of legibility or
otherwise), put a % somewhere on the line—that makes it nonempty.

〈name〉 should consist of character tokens only. It is used as the name of an
integer variable, which will serve as loop variable. This variable gets reset to
the value of 〈start〉 before the first repetition of 〈body code〉. After each repetition
but the last, it is incremented by 〈step〉. 〈body〉 gets repeated if the value of
〈name〉 has not gotten past that of 〈stop〉. To get past means to be bigger if 〈step〉
is positive and to be smaller if 〈step〉 is negative. In the case that 〈step〉 is zero,
the entire construction above will be equivalent to

\resetint{〈name〉}{〈start〉}
〈body〉

34

\for . . . \endfor constructions can be nested. 〈name〉 is used by \for to
identify its matching \endfor, so they need to be identical in \for and \endfor.
Note that the delimiters around the 〈name〉 are parentheses, not braces.

\foreach(〈name〉){〈csep-list〉} 〈body〉 \endfor(〈name〉) New feature

v1.901

will cause the 〈body〉 code to be repeated one time for each item in the 〈csep-list〉.
〈csep-list〉 is a comma-separated list of string expressions.

As a precaution, the 〈body〉 is not allowed to contain any empty lines (\par
tokens). If you want to have the visual separation (for sakes of legibility or
otherwise), put a % somewhere on the line—that makes it nonempty.

〈name〉 should consist of character tokens only. It is used as the name of a
string variable, which will serve as loop variable. Before each repetition of the
〈body code〉, the loop variable will get reset to the next item in the 〈csep-list〉.

\foreach. . . \endfor constructions can be nested. 〈name〉 is used by \foreach

to identify its matching \endfor, so they need to be identical in \foreach

and \endfor. Note that the delimiters around the 〈name〉 are parentheses, not
braces.

5.5 Other general commands

\needsfontinstversion{〈version〉}

This issues a warning if the current version of the fontinst package is less than
〈version〉.

\needsTeXextension{〈extension tests〉}{〈who〉} New feature

v1.914

The \needsTeXextension command issues a warning if fontinst is not being
run on one of the listed extensions of TEX. This can be used to protect files that
make use of features not present in base TEX. As 〈who〉 is preferably used the
file name in which the command occurs; it should be the answer to “who is
issuing this warning?”

An extension test is one of:

\eTeX{〈version number〉}
\pdfTeX{〈version number〉}{〈revision〉}

Multiple tests in sequence are OR’ed together. If you rather need to AND them,
then use separate \needsTeXextension commands.

Note for hackers. At present there is no test for Omega. This is really a shame, because
the extended character codes (outside the 0–255 range) provided by Omega is the ex-
isting extension that would be most useful for fontinst, but Omega documentation does
not give any indication of how such a test should be implemented. Code contributions
are welcome.

35

\fontinstcc

\normalcc
New feature

v1.915

\fontinstcc switches to the catcodes used in e.g. fontinst.sty: _ and @ are
letters, space and newline are ignored, and ~ is a space. \normalcc switches
back to normal catcodes.

\begincomment 〈text〉 \endcomment New feature

v1.900

This hides the 〈text〉 from fontinst processing, but allows it to show up when
the file is typeset with fontdoc.

\fontinsterror{〈subsystem〉}{〈error〉}{〈help〉}
\fontinstwarning{〈subsystem〉}{〈warning〉}
\fontinstwarningnoline{〈subsystem〉}{〈warning〉}
\fontinstinfo{〈subsystem〉}{〈info〉}

New feature

v1.906

General commands to convey information to the user, based on LATEX’s \PackageError,
\PackageWarning, etc.

\messagebreak New feature

v1.906

Used to start a new line in an 〈error〉, 〈help〉, 〈warning〉, or 〈info〉 message.

Finally, there are two PlainTEX commands which should be mentioned:

\input 〈file name〉
\bye

\input followed by a 〈file name〉 (without braces around) is the recommen-
ded way of inputting a fontinst command file, or the fontinst package itself
(fontinst.sty, finstmsc.sty, etc.). This is the only way to make things work
regardless of whether the underlying format is LATEX, PlainTEX, or even a raw
IniTEX.

\bye is the command to use to terminate a fontinst command file.

6 Encoding files

An encoding file (or .etx file) is a TEX document with the structure:

\relax

〈ignored material〉
\encoding

〈encoding commands〉
\endencoding

〈ignored material〉

This describes the encoding of a font, using the 〈encoding commands〉.

36

Since the encoding file ignores any material between \relax and \encoding,
an encoding file can also be a LATEX document. The structure is then

\relax

\documentclass{article} % Or some other class
\usepackage{fontdoc}

〈LATEX preamble〉
\begin{document}

〈LATEX text〉
\encoding

〈encoding commands〉
\endencoding

〈LATEX text〉
\end{document}

See also the descriptions in Writing ETX format font encoding specifications (encspecs.tex).

6.1 Encoding commands

The 〈encoding commands〉 are:

\nextslot{〈integer expression〉}

Sets the number of the next slot. If there is no \nextslot command, the number
is the successor of the previous slot. Immediately after \encoding, the next slot
number is 0.

\skipslots{〈integer expressions〉} New feature

v1.8

Advances the number of the next slot.

\setslot{〈glyph〉} 〈slot commands〉 \endsetslot

Assigns 〈glyph〉 to the current slot. The 〈slot commands〉 can be used to specify
additional behaviour for the slot, and typically also contains comments about
the glyph.

\setleftboundary{〈glyph〉} 〈slot commands〉 \endsetleftboundary New feature

v1.9

Makes the beginning of a word (left boundary) behave like the right side of
〈glyph〉 with respect to kerning. \ligature commands in the 〈slot commands〉
create beginning of word ligatures.

\setrightboundary{〈glyph〉} New feature

v1.9

Makes the end of a word (right boundary) behave like the left side of 〈glyph〉
with respect to kerning and ligatures. The current slot position is left empty.

37

\inputetx{〈file〉}

Inputs the 〈encoding commands〉 of 〈file〉.etx.

\setfontdimen{〈fontdimen no.〉}{〈integer variable〉} New feature

v1.917

Sets up a correspondence between a font dimension and an integer variable.
When generating a font, the font dimension value is taken from the integer
variable. When converting a font from pl or vpl format, the fontdimen value
will be recorded as a \setint command for the variable.

\ifdirect New feature

v1.924

Encoding files set up a correspondence between slot numbers and glyph
names, which can be used in two different ways. In the direct mode, encoding
files map slot numbers to glyph names. In the inverse mode, glyph names are
mapped to slot numbers. The inverse mapping can in general be one-to-many,
and when precisely one target slot is needed fontinst chooses that arbitrarily.
The \ifdirect conditional can be used to disambiguate the inverse mapping,
by conditionalising all undesired \setslots on that the file is being interpreted
in the direct mode. For example:

\ifdirect

\setslot{hyphen}

\comment{Soft hyphen slot}

\endsetslot

\Else

\skipslots{1}

\Fi

Currently the only case in which encoding files are being read in the inverse
mode is when reencoding fonts.

\setslotcomment{〈text〉}
\resetslotcomment{〈text〉}
\unsetslotcomment

New feature

v1.8

These commands can be used to specify an automatic \comment text for all
slots. They are ignored by fontinst, but interpreted by fontdoc.

\useexamplefont{〈font〉} New feature

v1.8

This command is ignored by fontinst. In fontdoc it sets the font that is used by
the \slotexample command. The 〈font〉 argument has the same syntax for a
font as the TEX primitive \font.

6.2 Slot commands

The 〈slot commands〉 are:

38

\comment{〈text〉}

A comment, which is ignored by fontinst, but typeset as a separate paragraph
by fontdoc.

\label{〈text〉} New feature

v1.917

A reference label (like in LATEX), which records the slot number and glyph name.
Ignored by fontinst.

\ligature{〈ligtype〉}{〈glyph1〉}{〈glyph2〉}

\ligature declares a ligature of type 〈ligtype〉, which will take effect if the cur-
rent glyph is immediately followed by 〈glyph1〉 when TEX is constructing a list
of horizontal material. This ligature will then replace the two glyphs by the
third glyph 〈glyph2〉. For example:

\setslot{ff}

\comment{The ‘ff’ ligature.}

\ligature{LIG}{i}{ffi}

\ligature{LIG}{l}{ffl}

\endsetslot

declares one ligature ff ∗ i −→ ffi and one ligature ff ∗ l −→ ffl.

The eight 〈ligtype〉s are the names of the underlying pl properties, i.e.,:

LIG /LIG /LIG> LIG/ LIG/> /LIG/ /LIG/> /LIG/>>

The basic LIG may be immediately preceded or followed by a slash, and then
immediately followed by > characters not exceeding the number of slashes.
The slashes specify retention of the left or right original glyph; the > signs spe-
cify passing over that many glyphs of the result without further ligature or
kern processing.

\Ligature{〈ligtype〉}{〈glyph〉}{〈glyph〉}
\oddligature{〈note〉}{〈ligtype〉}{〈glyph〉}{〈glyph〉}

New feature

v1.918

The \Ligature command is by default a synonym of \ligature (but fontdoc

may typeset them differently). The \oddligature command is by default ig-
nored by fontinst. See encspecs.tex for an explanation of the semantic differ-
ences.

\makerightboundary{〈glyph〉}

This makes the current slot the end of word (right boundary) marker with re-
spect to ligatures and kerning, i.e., TEX will kern and ligature as if there was an
invisible occurrence of this character after the last character of every word. All
kerns and ligatures with 〈glyph〉 as the right part will apply for this slot.

39

It is preferable to use \setrightboundary to control end of word behaviour if
you have an empty slot to spare.

\Unicode{〈code point〉}{〈name〉}
\charseq{〈\Unicode commands〉}

These commands declare a Unicode character or character sequence as pos-
sible interpretations of what is in this slot. They are ignored when making
fonts, but fontdoc give them a prominent role in encoding specifications and to
\etxtocmap they are the primary properties of the slot.

\usedas{〈type〉}{〈control sequence〉} New feature

Obsolete?!

This command declares a TEX control sequence for this slot, with the type taken
from:

char accent mathord

mathbin mathrel mathopen

mathclose mathpunct mathvariable

mathaccent mathdelim

There is currently no code in fontinst which makes any use of this command. It
might in principle be possible to autogenerate LATEX output encoding definition
(〈enc〉enc.def) files and math symbol declarations from this information.

\nextlarger{〈glyph〉}

Math font property: makes 〈glyph〉 the NEXTLARGER entry of the current slot.

\varchar 〈varchar commands〉 \endvarchar

Math font property: sets the VARCHAR entry for the current slot, using the
〈varchar commands〉. The possible 〈varchar commands〉 are:

\vartop{〈glyph〉}
\varmid{〈glyph〉}
\varbot{〈glyph〉}
\varrep{〈glyph〉}

Sets the top, middle, bottom, or repeated 〈glyph〉 of the VARCHAR.

6.3 Other

\ifisinslot{〈glyph〉}{〈slot〉}\then New feature

v1.9

During vpl /pl generation, this conditional tests whether glyph 〈glyph〉 (a
string expression) is put in the slot 〈slot〉 (an integer expression). Since encod-
ing files are normally read several times in that context, the exact behaviour of

40

this command is a bit uncertain. It was intended to support collecting addi-
tional information about the fonts being generated, but at the time of writing
this is probably only of academic interest.

\declarepsencoding{〈etx-name〉}{〈PS-encoding-name〉}{〈action〉} New feature

v1.931

This command is placed in etx files generated by \enctoetx, and has the same
syntax as in a mapmaking command file (see Subsection 4.3). It records inform-
ation about the source encoding file to assist the map file writer, but is mostly
ignored by main fontinst.

7 Metric files

A metric file (or mtx file) is a TEX document with the structure:

\relax

ignored material
\metrics

〈metric commands〉
\endmetrics

ignored material

This describes the glyphs in a font, using the 〈metric commands〉. Like encoding
files, metric files can simultaneously be LATEX documents.

Metric files are usually either hand-crafted or transformable. The transformable
metric files typically encode the metrics of one particular font and are automat-
ically generated. Hand-crafted metric files (such as latin.mtx) typically do not
contain much explicit metric data, instead the code there makes use of metrics
previously specified by other files to construct new glyphs or adjust metrics to
meet special conditions. Whereas transformable metric files tend to be mere
lists of metric data, the hand-crafted metric files are more like programs.

7.1 Metric commands

The 〈metric commands〉 are as follows. All glyph name arguments are string
expressions.

\setglyph{〈name〉} 〈glyph commands〉 \endsetglyph

If the glyph called 〈name〉 is undefined, it is built using the 〈glyph commands〉,
for example:

\setglyph{IJ}

\glyph{I}{1000}

\glyph{J}{1000}

\endsetglyph

41

\setglyph{Asmall}

\glyph{A}{850}

\endsetglyph

The 〈glyph commands〉 are not executed if the glyph has already been set.

\resetglyph{〈name〉} 〈glyph commands〉 \endresetglyph

This builds a glyph using the 〈glyph commands〉, and defines (at \endresetglyph)
〈name〉 to be that glyph, regardless of whether that glyph was already defined.

\unsetglyph{〈name〉}

Makes the glyph called 〈name〉 undefined.

\setrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

\setscaledrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈scale〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

These commands will usually be generated automatically from an afm or pl

file. If the glyph 〈name〉 is undefined, then this sets it to be that which is found
in slot 〈slot〉 of font 〈font〉. The 〈width〉, 〈height〉, 〈depth〉, and 〈italic〉 are saved
away as the width, height, depth and italic correction respectively of the glyph.

The 〈scale〉 is a scaling factor which has been applied to the font to give it the
specified metrics. If the integer variable rawscale is set, another scaling by
that amount will be applied to the glyph (this is how the scaled keyword in
\installfont metrics-lists take effect).

The 〈dimen〉 is the nominal design size of the 〈font〉, usually 10pt; this informa-
tion isn’t really needed for anything, but the vf format requires it to be specified
and match what is in 〈font〉.tfm, so a dvi driver is allowed to error out on us if
we don’t get this value right.

\setnotglyph{〈name〉}{〈font〉}{〈dimen〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

\setscalednotglyph{〈name〉}{〈font〉}{〈dimen〉}{〈scale〉}{〈slot〉}
{〈width〉}{〈height〉}{〈depth〉}{〈italic correction〉}

These set a glyph called 〈name〉-not (if that wasn’t set already) to have the
specified width, height, depth, and italic correction but be invisible in print.

Such commands are usually generated automatically from an afm file, when
a glyph is present in the 〈font〉 but is not in the default encoding. They take
the same arguments as \setrawglyph and \setscaledrawglyph respectively
(although the 〈slot〉 will normally be -1), because reencoding a font can turn
\setrawglyph commands into \setnotglyph commands and vice versa.

42

\inputmtx{〈file〉}

Inputs the 〈metric commands〉 of 〈file〉.mtx.

\usemtxpackage{〈package list〉}
\ProvidesMtxPackage{〈package name〉}

New feature

v1.9

\usemtxpackage behaves like \inputmtx, but it will only input a file if no
\ProvidesMtxPackage for that file has been issued. By putting a \ProvidesMtxPackage
in an mtx file one can use it in several places without having to worry about it
being sourced more than once.

Note for hackers. \ProvidesMtxPackage declarations make local assignments, so the
package is forgotten when the current group ends. In particular, the settings made with
\ProvidesMtxPackage are forgotten when the current glyph base is flushed.

7.2 Glyph commands

The 〈glyph commands〉 add material to the glyph currently being constructed in
a \setglyph . . . \endsetglyph or \resetglyph . . . \endresetglyph. They are:

\glyph{〈glyph〉}{〈integer expression〉}

Sets the named glyph 〈glyph〉 at the given scale, with 1000 as the natural size.
This:

• Advances the current glyph width.

• Sets the current glyph height to be at least the height of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph depth to be at least the depth of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph italic correction to be the same as the set glyph.

The named glyph must have already been defined, otherwise an error will oc-
cur. For example:

\setglyph{fi}

\glyph{f}{1000}

\glyph{i}{1000}

\endsetglyph

\glyphrule{〈integer expression〉}{〈integer expression〉}

Sets a rule of the given width and height, for example:

\setglyph{underline}

\glyphrule{333}{40}

\endsetglyph

43

\glyphspecial{〈string expression〉}

Sets a driver-dependent \special, for example:

\setglyph{crest}

\glyphspecial{Filename: crest.eps}

\endsetglyph

\glyphwarning{〈string expression〉}

Sets a warning \special, and produces a warning message each time the glyph
is used, for example:

\setglyph{missingglyph}

\glyphrule{500}{500}

\glyphwarning{Missing glyph ‘missingglyph’}

\endsetglyph

\movert{〈integer expression〉}

Moves right by the given amount, and advances the current glyph width, for
example:

\setglyph{Asmall}

\movert{50}

\glyph{A}{700}

\movert{50}

\endsetglyph

\moveup{〈integer expression〉}

Moves up by the given amount, and advances the current vertical offset. Each
glyph should always end at vertical offset zero, for example:

\setglyph{onehalf}

\moveup{500}

\glyph{one}{700}

\moveup{-500}

\glyph{slash}{1000}

\moveup{-200}

\glyph{two}{700}

\moveup{200}

\endsetglyph

\push 〈glyph commands〉 \pop

Performs the 〈glyph commands〉, but at the \pop the current position and glyph
width are restored to what they were at the \push, for example:

44

\setglyph{aacute}

\push

\movert{\half{\sub{\width{a}}{\width{acute}}}}

\glyph{acute}{1000}

\pop

\glyph{a}{1000}

\endsetglyph

\glyphpcc{〈glyph〉}{〈integer expression〉}{〈integer expression〉}

This is generated from PCC instructions in an afm file, and is syntactic sugar for:

\push

\movert{〈first integer expression〉}
\moveup{〈second integer expression〉}
\glyph{〈glyph〉}{1000}
\pop

\resetwidth{〈integer expression〉}
\resetheight{〈integer expression〉}
\resetdepth{〈integer expression〉}
\resetitalic{〈integer expression〉}

Sets the width, height, depth, or italic correction of the current glyph.

\samesize{〈glyph〉}

Sets the dimensions of the current glyph to be the same as 〈glyph〉.

Inside a \setglyph definition of 〈glyph〉, you can use expressions such as
\width{〈glyph〉} to refer to the glyph defined so far. For example, a display
summation sign can be defined to be a text summation

∑
scaled 120% with

0.5 pt extra height and depth using:

\setglyph{summationdisplay}

\glyph{summationtext}{1200}

\resetheight{\add{\height{summationdisplay}}{50}}

\resetdepth{\add{\depth{summationdisplay}}{50}}

\endsetglyph

Within a \resetglyph, these expressions will refer to the previous definition of
the glyph. For example, you can add sidebearings to the letter ‘A’ with:

\resetglyph{A}

\movert{25}

\glyph{A}{1000}

\movert{25}

\endresetglyph

45

7.3 Kerning commands

The kerning commands may be used anywhere in a metrics file.

\setkern{〈glyph〉}{〈glyph〉}{〈integer expression〉}

This sets a kern between the two glyphs, scaled by the current value of
rawscale, unless such a kern already has been set.

\resetkern{〈glyph〉}{〈glyph〉}{〈integer expression〉} New feature

v1.9

\resetkern unconditionally sets a kern between the two glyphs, scaled by the
current value of rawscale.

\setleftkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}
\setrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph
kerns on the left or right, for example:

\setleftkerning{Asmall}{A}{850}

\setrightkerning{Asmall}{A}{850}

\setleftkerning{IJ}{I}{1000}

\setrightkerning{IJ}{J}{1000}

The commands work by copying kerning pairs containing the first glyph. As
the names indicates, these commands do not override kerning pairs previously
set.

\setleftrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉} New feature

v1.8

Sets the amount by which the first glyph should mimic how the second glyph
kerns on both sides, for example:

\setleftrightkerning{Asmall}{A}{850}

This command is equivalent to doing first a \setleftkerning and then a
\setrightkerning.

\noleftkerning{〈glyph〉}
\norightkerning{〈glyph〉}
\noleftrightkerning{〈glyph〉}

New feature

v1.906

Removes all kerning on the specified side(s) of the 〈glyph〉.

\unsetkerns{〈left glyph list〉}{〈right glyph list〉} New feature

v1.9

Removes all kerns with one glyph in the 〈left glyph list〉 on the left and one
glyph in the 〈right glyph list〉 on the right.

46

7.4 Other

\aliased{〈font’s name〉}{〈alias name〉} New feature

v1.915

This command, which syntactically counts as a 〈string expression〉, is meant to
be used in glyph name arguments of commands one may find in metric files. It
was added to support combining mapfile entry generation with a custom form
of reglyphing that has been developed for the T2 bundle (Cyrillic font support).
This does however not necessarily mean that the T2 bundle has been updated
to take advantage of this feature.

The basic problem is that cyrillic fonts display a much greater variation in how
the glyphs are named than latin fonts do.2 This complicates writing files sim-
ilar to latin.mtx, so the author of the T2 bundle took the route to regularize
the glyph names at the afm to mtx conversion step. Since TEX does not know
anything about glyph names, this makes no difference for the virtual fonts that
are built. The glyph names do however make a difference for base fonts that
are reencoded, since PostScript encoding vectors list explicit glyph names that
have to be the same as in the font. Fontinst’s choice of encoding vector for a
mapfile entry is based on which etx file was used in the reencoding, and hence
the glyph names used when reencoding must match those actually used in the
font, or problems will follow.

The \aliased command can be used to preserve the information necessary for
such reencodings. If a glyph name is specified as for example

\aliased{afii10018}{CYRB}

then fontinst will behave as if the glyph name is CYRB (i.e., the 〈alias name〉) for
all purposes except reencoding, where instead fontinst behaves as if the glyph
name is the 〈font’s name〉 afii10018. This makes it possible to use etx files
when reencoding which can be correctly translated to the right encoding vec-
tors.

\providepsencoding{〈etx〉}{〈postscript name〉}{〈action〉} New feature

v1.931

If this command occurs in an mtx file then it was placed there by a \declare-
psencoding in an etx file that was used to reencode this mtx. It is meant for
consumption by the mapfile writer, and is ignored by main fontinst.

8 fontdoc commands

The following commands are defined by fontdoc but are unknown to fontinst.

2The Adobe guidelines have not been as prevailing here as in the latin range, but this isn’t en-
tirely surprising when they give opaque suggestions such as using the name afii10018 for U+0411
(CYRILLIC CAPITAL LETTER BE). The suggestion made some sense though; AFII (Association for
Font Information Interchange) maintained a glyph registry.

47

8.1 Comment commands

\plaindiv

\plainint

\plainmax

\plainmin

\plainneg

These are the LATEX definitions of \div, \int, \max, \min, and \neg respectively.
They are provided under these names because fontinst uses the normal names
for integer expression constructions.

\slotexample New feature

v1.8

This typesets the character in the current slot from the example font (cf. \use-
examplefont).

\macroparameter{〈digit〉} New feature

v1.916

This can be used in integer and string expressions. It typesets as #n, where ‘n’
is the 〈digit〉.

\textunicode{〈code point〉}{〈name〉} New feature

v1.918

This generates a reference to a particular Unicode character, for use within a
\comment or similar.

8.2 Style control commands

\showbranches New feature

v1.909

The is the main switch that turns on displaying both branches of fontinst con-
ditionals. If you use this command in an encoding or metrics file, you must
use \Else and \Fi to delimit the conditionals in that file. If you do not use this
command in an encoding or metrics file, then the conditionals will not generate
any typeset material and neither will their 〈else branch〉es.

9 fontinst variables

The following is a list of the fontinst variables that are accessible for the user
through the \set. . . , \reset. . . , \unset. . . , etc. commands. You may of course
set or use other variables in the mtx and etx files you write yourself, as does
for example the standard mtx file latin.mtx, but all variables that fontinst com-
mands implicitly use or set are listed below.

acccapheight (integer denoting length)

48

Description The height of accented full capitals.
Set by mtx files.
Used by Some etx and mtx files.

address (string)

Description Snailmail address put in BibTEX-style file header of auto-
matically generated enc files. No address field is written unless the
address string is set. Quotes are not automatically inserted around
the address string.

Set by etx files.
Used by The etx-to-enc converter.

afm-name (string)

Description Name of source font. Internal variable.
Set by \from. . . commands.
Used by The \transformfont, \installfont, \installrawfont, and

\reglyphfont commands.

ascender (integer denoting length)

Description The ascender height of the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint com-

mands for this integer.
Used by Some mtx and etx files.

author (string)

Description Author name(s) put in BibTEX-style file header of automat-
ically generated enc files. See the macro \ref_to_sourcefile for
more details.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file

〈etx name〉" is used instead.

\autoinstallfamily (command)

Description Command called by the font installation commands, as

\autoinstallfamily{〈encoding〉}{〈family〉}

when they are asked to install a font with a combination of 〈encoding〉
and 〈family〉 that has not been seen before (there was no explicit
\installfamily).

Set by Explicit commands. Defaults to calling \installfamily.
Used by Font installation commands.

axisheight (integer denoting length)

Description Math formula parameter σ22.
Set by mtx files.
Used by Some etx and mtx files.

baselineskip (integer denoting length)

Description The font designer’s recommendation for natural length of
the TEX parameter \baselineskip.

Set by mtx files.

49

Used by Some etx and mtx files.

bigopspacing1 (integer denoting length)

Description Math formula parameter ξ9.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing2 (integer denoting length)

Description Math formula parameter ξ10.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing3 (integer denoting length)

Description Math formula parameter ξ11.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing4 (integer denoting length)

Description Math formula parameter ξ12.
Set by mtx files.
Used by Some etx and mtx files.

bigopspacing5 (integer denoting length)

Description Math formula parameter ξ13.
Set by mtx files.
Used by Some etx and mtx files.

capheight (integer denoting length)

Description The height of the font’s full capitals.
Set by mtx files. The afm-to-mtx converter usually writes \setint com-

mands for this variable.
Used by Some mtx and etx files.

cmapname (string)

Description The name given to the CMap generated from an etx file.
Set by etx files.
Used by The etx-to-CMap converter. When not set, the value fontinst-

〈cmap file name〉 is used instead.

codingscheme (string)

Description The codingscheme name.
Set by etx files.
Used by The (v)pl writer. When not set, the value UNKNOWN is used in-

stead.

defaultrulethickness (integer denoting length)

Description Math formula parameter ξ8.
Set by mtx files.
Used by Some etx and mtx files.

delim1 (integer denoting length)

50

Description Math formula parameter σ20.
Set by mtx files.
Used by Some etx and mtx files.

delim2 (integer denoting length)

Description Math formula parameter σ21.
Set by mtx files.
Used by Some etx and mtx files.

denom1 (integer denoting length)

Description Math formula parameter σ11.
Set by mtx files.
Used by Some etx and mtx files.

denom2 (integer denoting length)

Description Math formula parameter σ12.
Set by mtx files.
Used by Some etx and mtx files.

descender (integer denoting length)

Description The depth of lower case letters with descenders.
Set by mtx files.
Used by Some etx and mtx files.

descender neg (integer denoting length)

Description The vertical position of the descender line of the font, i.e.,
the negative of the font’s descender depth.

Set by mtx files. The afm-to-mtx converter usually writes \setint com-
mands for this variable.

Used by Some mtx and etx files.

designsize (dimension)

Description The design size of the font.
Set by mtx files. The (v)pl-to-mtx converter usually writes \setdim com-

mands for this variable.
Used by The (v)plwriter. The design size defaults to 10 pt if this variable

is not set.
Note The value of this variable has no effect on how the font is declared

to LATEX.

designunits (dimension denoting a real number)

Description The design size of a font expressed in the design unit used
in a (v)pl file.

Set by mtx files. The (v)pl-to-mtx converter usually writes \setdim com-
mands for this variable.

Used by Nothing. If this variable is set, but to any value other than 1 pt,
then some metrics are most likely wrong.

digitwidth (integer denoting length)

Description The median width of the digits in the font.

51

Set by mtx files.
Used by Some etx and mtx files.

email (string)

Description Email address put in BibTEX-style file header of automat-
ically generated enc files. See the macro \ref_to_sourcefile for
more details.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file

〈etx name〉" is used instead.

encodingname (string)

Description The name by which the encoding in question is made known
to a Postscript interpreter.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value fontinst-

autoenc-〈etx name〉 is used instead.

etx-name (string)

Description Name of etx file. Internal variable in \transformfont.
Set by The \reencodefont command.
Used by The \mtxtomtx command.

extraspace (integer denoting length)

Description The natural width of extra interword glue at the end of a
sentence.

Set by mtx files.
Used by Some etx and mtx files.

fontdimen(n) (integer)

Description Family of semi-internal variables that store the values to use
for font dimension n. It is preferred that the newer \setfontdimen
interface is used for setting these values.

Set by etx files.
Used by The (v)pl writer.

\iftokeep (macro)

Description \iftokeep#1 \then, where #1 will be a 〈number〉, behaves
like a switch and decides whether a glyph is kept or not while re-
glyphing.

Set by Explicit commands. Defaults to

\iftokeep #1 \then 7→ \ifnum -1<#1

Used by The \reglyphfont command.

interword (integer denoting length)

Description The natural width of interword glue (spaces).
Set by mtx files.
Used by Some etx and mtx files.

52

italicslant (integer denoting factor)

Description The italic slant of a font.
Set by mtx files generated from afm or (v)pl files. mtx files generated by

\transformfont. Locally in the afm-to-mtx converter for possible
use in \uprightitalcorr or \slanteditalcorr.

Used by mtx files (latin.mtx and the like). etx files (for determining
fontdimen(1)).

killweight (integer)

Description Weight for glyphs that are killed.
Set by Explicit commands. Defaults to −10 if not set.
Used by The \killglyph command; indirectly the \reglyphfont com-

mand.

letterspacing (integer denoting length)

Description Extra width added to all glyphs of a font.
Set by mtx (preferred) or etx files.
Used by The (v)pl writer. Defaults to 0 if not set.

maxdepth (integer denoting length)

Description The maximal depth over all slots in the font.
Set by mtx files.
Used by Some etx and mtx files.

maxdepth neg (integer denoting length)

Description The negative of the maximal depth of a glyph in the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint com-

mands for this variable.
Used by Some etx and mtx files.

maxheight (integer denoting length)

Description The maximal height of a glyph in the font.
Set by mtx files. The afm-to-mtx converter usually writes \setint com-

mands for this variable.
Used by Some etx and mtx files.

minimumkern (integer denoting length)

Description Kerns whose size in absolute value is less than or equal to
this variable are ignored.

Set by Command files or mtx files.
Used by The afm-to-mtx converter and the (v)pl file generator. When not

set, the value 0 is used instead.

monowidth (flag integer)

Description Set if this font is monowidth, unset otherwise.
Set by mtx files. The afm-to-mtx converter writes a \setint command

for this variable if the afm specifies IsFixedPitch true.
Used by Some mtx files (latin.mtx and the like), etx files.

num1 (integer denoting length)

53

Description Math formula parameter σ8.
Set by mtx files.
Used by Some etx and mtx files.

num2 (integer denoting length)

Description Math formula parameter σ9.
Set by mtx files.
Used by Some etx and mtx files.

num3 (integer denoting length)

Description Math formula parameter σ10.
Set by mtx files.
Used by Some etx and mtx files.

quad (integer denoting length)

Description The quad width of the font, normally approximately equal
to the font size and/or the width of an ‘M’.

Set by mtx files.
Used by Some etx and mtx files.
Note It is the quad width in the symbol math font (family 2) that TEX

uses as reference when translating mus to ordinary lengths. Hence
that quad can be considered a math font designer’s scaling factor
for mu.

PSfontsuffix (string)

Description Suffix added to font names to form name of file to download
to include font.

Set by Explicit commands in mapmaking command files. Defaults to
‘.pfa’.

Used by The map file fragments writer.

rawscale (integer denoting factor)

Description Scaling factor applied to raw glyphs.
Set by The \installfont command (scaled clauses in argument #2).

Unset for metric files listed without a scaled clause.
Used by The \setrawglyph, \setnotglyph,\setscaledrawglyph,\set-

scalednotglyph, \setkern, and \resetkern commands.

renameweight (integer)

Description Weight for glyphs that are renamed.
Set by Explicit commands. Defaults to 1 if not set.
Used by The \renameglyph command; indirectly the \reglyphfont com-

mand.

requireglyphs (flag integer)

Description Set if warnings are to be generated for glyphs listed in etx

files but not present in the glyph base.
Set by Explicit commands. By default not set.
Used by The (v)pl file generator.

54

rightboundary (string)

Description The name of a glyph with the property that kerns on the left
may be intended as right word boundary kerns.

Set by mtx files. The (v)pl-to-mtx converter can write \setstr com-
mands for this variable.

Used by Some mtx files.

shrinkword (integer denoting length)

Description The (finite) shrink component of interword glue.
Set by mtx files.
Used by Some etx and mtx files.

slant-scale (integer denoting factor)

Description Factor to slant by. Internal variable in \transformfont.
Set by The \slantfont, \xscalefont, and \scalefont commands.
Used by The \mtxtomtx command.

\SlantAmount (macro expanding to an integer expression)

Description Slant factor used for faking oblique shape.
Set by Explicit commands. Defaults to 167.
Used by The \latinfamily command.

\slanteditalcorr (macro expanding to an integer expression)

Description The integer expression used to calculate a guess for the italic
correction of glyphs in a font with positive slant. It has the syntax

\slanteditalcorr{〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}

where 〈width〉 is the glyph’s advance width, and the remaining ar-
guments are coordinates of sides of the glyph’s bounding box. The
italicslant integer provides the italic slant of the font.

Set by Explicit commands in fontinst command files. Defaults to

max{0, right − width}.

Used by The afm-to-mtx converter.

stretchword (integer denoting length)

Description The (finite) stretch component of interword glue.
Set by mtx files.
Used by Some etx and mtx files.

sub1 (integer denoting length)

Description Math formula parameter σ16.
Set by mtx files.
Used by Some etx and mtx files.

sub2 (integer denoting length)

Description Math formula parameter σ17.
Set by mtx files.
Used by Some etx and mtx files.

55

subdrop (integer denoting length)

Description Math formula parameter σ19.
Set by mtx files.
Used by Some etx and mtx files.

sup1 (integer denoting length)

Description Math formula parameter σ13.
Set by mtx files.
Used by Some etx and mtx files.

sup2 (integer denoting length)

Description Math formula parameter σ14.
Set by mtx files.
Used by Some etx and mtx files.

sup3 (integer denoting length)

Description Math formula parameter σ15.
Set by mtx files.
Used by Some etx and mtx files.

supdrop (integer denoting length)

Description Math formula parameter σ18.
Set by mtx files.
Used by Some etx and mtx files.

TFMfileprefix (string)

Description Prefix (typically a path) added to names of TFM files.
Set by Explicit commands in mapmaking command files. By default not

set, which is equivalent to being empty.
Used by The pltotf “map file fragments writer”.

underlinethickness (integer denoting length)

Description The recommended thickness of an underlining rule.
Set by mtx files. The afm-to-mtx converter usually writes \setint com-

mands for this variable.
Used by Some mtx files (latin.mtx and the like).

\uprightitalcorr (macro expanding to an integer expression)

Description The integer expression used to calculate a guess for the it-
alic correction of glyphs in a font with non-positive slant. It has the
syntax

\uprightitalcorr{〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}

where 〈width〉 is the glyph’s advance width, and the remaining ar-
guments are coordinates of sides of the glyph’s bounding box. The
italicslant integer provides the italic slant of the font.

Set by Explicit commands in fontinst command files. Defaults to 0.
Used by The afm-to-mtx converter.

version (string)

56

Description Version number put in BibTEX-style file header of automat-
ically generated enc files. See the macro \ref_to_sourcefile for
more details.

Set by etx files.
Used by The etx-to-enc converter. When not set, the value "See file

〈etx name〉" is used instead.

verticalstem (integer denoting length)

Description The dominant width of vertical stems (usually the width of
stems of lower case letters).

Set by mtx files. The afm-to-mtx converter writes \setint commands for
this variable if the afm file specifies StdVW.

Used by Currently nothing.

warningspecials (switch)

Description Controls whether \glyphwarning commands will generate
vpl SPECIALs. Defaults to ‘true’.

Set by Explicit commands (\warningspecialstrueand \warningspecialsfalse).
Used by The (v)pl file generator.

x-scale (integer denoting factor)

Description Horizontal scaling factor. Internal variable in \transform-
font.

Set by The \xscalefont and \scalefont commands.
Used by The \mtxtomtx command.

xheight (integer denoting length)

Description The x-height of the font.
Set by mtx files. The afm-to-mtx and (v)pl-to-mtx converters usually

write \setint commands for this variable.
Used by mtx files, and etx files (for determining fontdimen(5)).

y-scale (integer denoting factor)

Description Vertical scaling factor. Internal variable in \transformfont.
Set by The \yscalefont and \scalefont commands.
Used by The \mtxtomtx command.

〈glyph〉-spacing (integer denoting length)

Description Glyph-specific override for letterspacing; extra width ad-
ded to the glyph 〈glyph〉 as part of the process of writing a vpl file.

Set by etx or mtx files.
Used by The (v)pl writer. Defaults to 0 if not set.

Besides these, the \latinfamily command provides a whole range of helper
macros (\latin_weights, \latin_widths, \latin_shapes, etc.) that are often
used somewhat like variables. That subject does however deserve to be treated
separately.

57

10 Customisation

The fontinst package reads a file fontinst.rc if it exists. This can contain your
own customisations. The catcodes that are in force when this file is read are the
same as those selected by \fontinstcc.

Similarly finstmsc.sty reads finstmsc.rc and the fontdoc package reads
fontdoc.cfg.

You can create a fontinst format by running iniTEX on fontinst.sty then
saying \dump.

11 Notes on features new with v 1.9

The following notes are copied from fisource.tex; they were written to ex-
plain new fontinst features to old fontinst users.

11.1 Metric packages

Fontinst has traditionally come with a collection of mtx files that complement
the mtx files generated from base font metrics, in that they build glyphs that
may be missing from the base fonts or in some other way needs to be im-
proved. The most well-known of these is the latin.mtx file; other examples
include textcomp.mtx,mathit.mtx, and latinsc.mtx. A problem with these is
however that they cannot produce optimal results for all fonts simply because
there are irregular differences in how fonts are set up by the foundries. Most
glyphs come out all right, but there are usually a few for which the parameters
used are more or less wrong. Therefore most high quality font installations are
made with modified versions of these files, where the parameters have been
tuned to the specific font design.

Modifying in particular latin.mtx is however not an entirely easy task, be-
cause this is a rather large file (with plenty of archaic pieces of code in curious
places). Doing it once is no big problem, but if one has to do it several times
(maybe because some errors are discovered in the original latin.mtx) then it
is probably no fun anymore. Furthermore, if one has two or three modified
copies of this file because one has made high quality installations of that many
different fonts then even a trivial bugfix might start to feel like entirely too
much work.

If one has to make modifications then it is usually easier to deal with several
small files (many of which can be used unchanged) than one big file. Thus
it would be better if these big files were split up into several smaller ones.
The main problem with splitting up something like latin.mtx is that there are
some commands which are defined at the top and which are then used in al-
most all sections of the file. One must make certain that these commands are
always loaded, which makes the metric files somewhat harder to use (espe-
cially if the one who tries to use them is not the one who wrote them).

58

One strategy is to include all definitions needed for a metric file in it. This
has the slight disadvantage that the commands will have to be defined several
times. What is worse however, is that the command definitions will appear in
several files, so if one finds a bug in one of them, one cannot simply correct
this bug in one place. As the number of files can soon become quite large,
correcting such bugs can become a boring procedure indeed.

Another strategy is to put all the command definitions in one file and then
explicitly include it in the 〈file-list〉 argument of \installfont. This eliminates
the repeated bug fixing problem, but requires the user to do something that the
computer can actually do just as well.

A third strategy is to put the command definitions in one or several files and
then in each metric file the user explicitly mentions load the command defini-
tions needed for that particular file. Metric packages uses an improved version
of this strategy, since they also make it possible for fontinst to remember which
packages (i.e., sets of command definitions) that have already been loaded, so
that they are not unnecessarily loaded again. The newlatin.mtx file is an al-
ternative to latin.mtx that implements this strategy. Most of the actual code
is located in the following metric packages:

ltcmds.mtx Defines some common commands used by the other
files.

llbuild.mtx Builds the latin lower case alphabet (unaccented letters
are ‘unfakable’, the rest are constructed if not present
in the base fonts).

lubuild.mtx Builds the latin upper case alphabet.
lsbuild.mtx Builds accented letters in the latin smallcaps alphabet,

but only if there are unaccented letters to build them
from in the base fonts.

lsfake.mtx Fakes a latin smallcaps alphabet by shrinking the up-
per case alphabet, but only if the glyph had not already
been manufactured.

lsmisc.mtx Make some miscellaneous smallcaps glyphs (mostly
“smallcaps f-ligatures”).

ltpunct.mtx Makes digits, punctuation marks, and other symbols
(mostly by marking as “unfakable”).

All of these are easy to use as components of equivalents of a modified
latin.mtxfiles, and all dependencies of one package upon another are handled
via explicit \usemtxpackage commands.

11.2 Word boundary ligatures and kerns

One of the new features added in TEX 3 was that of ligatures and kerns with
word boundaries. Fontinst has had an interface for making such ligatures and
kerns, but it has been completely redesigned in v 1.9 and the old interface (set-
ting the integer boundarychar) is no longer recognized by fontinst. Files which
use the old interface can still be processed with cfntinst.sty, though.

59

Before considering the new commands, it is suitable to make a distinction
between proper glyphs and pseudoglyphs. A proper glyph has been set using
one of the commands \setrawglyph, \setglyph, and \resetglyph. A pseudo-
glyph is any name used in the context of a glyph name which does not denote
a proper glyph. If a pseudoglyph g-not was set using the \setnotglyph com-
mand, then \ifisglyph{g-not}\thenwill evaluate to true, but something can
be a pseudoglyph even if an \ifisglyph test evaluates to false. The interest-
ing point about pseudoglyphs when considering word boundaries however, is
that a pseudoglyph can have ligatures and kerns.

Kerns and ligatures at the left word boundary (beginning of word) are specified
using the commands \setleftboundaryand \endsetleftboundary, which are
syntactically identical to \setslot and \endsetslot respectively. One import-
ant difference is however that the argument to \setslot must be a proper
glyph, while the argument to \setleftboundarymay be any glyph, hence any
pseudoglyph will do just fine.

\ligature commands between \setleftboundaryand \endsetleftboundary

will generate beginning of word ligatures. Kerns on the right of the glyph
specified in \setleftboundarywill become beginning of word kerns.

Kerns and ligatures at the right word boundary (end of word) are trickier, due
to the asymmetrical nature of the ligkern table in a pl file. What a font can
do is to specify that the right word boundary, for purposes of kerning and
ligatures, should be interpreted as character n. By including a kern or ligature
with character n on the right, that kern or ligature will be used at the end of
a word, but it will also be used each time the next character is character n.
Because of this, one usually wants the slot n, which the right word boundary
is interpreted as being, to be empty whenever the encoding allows this.

The command

\setrightboundary{〈glyph〉}

will mark the current slot as used to denote the right word boundary, and leave
the slot empty, increasing the current slot number by one just like a \setslot

. . . \endsetslot block does. Kerns on the left of 〈glyph〉 will be end of word
kerns and \ligature commands with 〈glyph〉 as the second argument will be
for the end of a word.

The command

\makerightboundary{〈glyph〉}

is similar to \setrightboundary, but it is a slot command which may only be
used between a \setslot and the matching \endsetslot. Like \setrightboundary,
it marks the current slot as used to denote the right word boundary, but the
glyph specified in the enclosing \setslot will be written to that slot. Ligatures
for the glyph specified by the \setslot and ligatures for the glyph specified by
the \makerightboundarywill both be for this single slot. Kerns on the right of
the \setslot glyph and the \makerightboundary glyph will similarly both be
for this single slot. The idea is that the \setslot glyph should be used when
making a kern or ligature for that glyph, while the \makerightboundaryglyph
should be used when making a kern or ligature for the end of a word. Fontinst

will warn you if these two uses of the slot directly contradict each other.

60

11.3 Changing the names of glyphs

Sometimes, primarily when making a virtual font from more than one raw
font and two of the raw fonts contain different glyphs with the same name, it
becomes necessary to change the names of some glyphs to make some sense
out of it. The main source of this kind of trouble is the “caps and small caps”
(SC) and “oldstyle figures” (OsF) fonts within many commercial font families.
The typical problem is that what is typographically different glyphs—such as
the lowercase ‘a’ (a, for fontinst) and the smallcaps ‘A’ (Asmall, for fontinst)—
are given the same name by the foundry.

One way to get round this is to say for example

\setglyph{Asmall} \glyph{a}{1000} \endsetglyph

\setleftrightkerning{Asmall}{a}{1000}

\unsetglyph{a}

\noleftrightkerning{a}

and continuing like that for all the duplicate glyph names. This is however
a rather prolix method and if the number of glyphs is large then it is usually
simpler to use the \reglyphfont command.

To reglyph one or several fonts, one writes

\reglyphfonts

〈reglyphing commands〉
\endreglyphfonts

There are two types of reglyphing commands: the \reglyphfont command,
and the commands that modify what \reglyphfont will do to the fonts it op-
erates on. The syntax of \reglyphfont is

\reglyphfont{〈destination font〉}{〈source font〉}

The 〈source font〉 font here is the name (suffix not included, of course) of the
font metric file one wants to change the glyph names in. This font metric file
can be in any of the formats mtx, pl, afm, and vpl, and it will be converted to
mtx format if it isn’t already in that format (this happens just as for files listed
in the second argument of \installfont). 〈destination font〉 (which must be
different from 〈source font〉) will be taken as the name for a new .mtx file that
will be generated. The destination font can differ from the source font only
in two ways: the names of some glyphs in the source font might be changed,
and some of the commands from the source font might not have been copied
to the destination font. To what extent the fonts are different is determined
by what modifying commands have been executed; when no modifying com-
mands have been executed, the source and destination font are equal.

The modifying reglyphing commands are

\renameglyph{〈to〉}{〈from〉}
\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}
\killglyph{〈glyph〉}
\killglyphweighted{〈glyph〉}{〈weight〉}
\offmtxcommand{〈command〉}
\onmtxcommand{〈command〉}

61

\renameglyph simply declares that occurrences of the glyph name 〈from〉 should
be replaced by the glyph name 〈to〉. To each glyph name is also assigned
a weight, which is used by a mechanism which conditions copying of com-
mands from the source font to the destination font by the set of glyphs that
command mentions. The details of this mechanism are however somewhat
tricky, so those interested in the full generality should read the comments in the
source of fontinst. Here it needs only be noted that if one applies \killglyph
to a glyph name, then (under most circumstances) commands that refer to that
glyph name will not be copied to the destination font.

\offmtxcommandand \onmtxcommandalso control whether commands are copied
to the destination font, but they look at the actual command rather than the
glyphs it refers to. For example, after the command

\offmtxcommand{\setkern}

no \setkern commands will be copied. By using \offmtxcommand, it is pos-
sible to achieve effects similar to those of the files kernoff.mtxand glyphoff.mtx—
the difference is that with \offmtxcommand, it happens at an earlier stage
of the font generation. As expected, \onmtxcommand undoes the effect of
\offmtxcommand.

A special rule pertains to the \setrawglyph, \setnotglyph, \setscaledraw-
glyph, and \setscalednotglyph commands, since \transformfont doesn’t
care what something was in the source font when it generates the transformed
font. To turn these commands off while reglyphing, you use \offmtxcommand

on \setscaledrawglyph.

The effects of modifying reglyphing commands are delimited by \reglyphfonts

and \endreglyphfonts, which starts and ends a group respectively.

As we expect the most common reglyphing operation will be to go from SC
glyph names to expert glyph names, there is a file csc2x.tex in the fontinst

distribution which contains the modifying reglyphing commands needed for
setting up that conversion. Thus you can write for example

\reglyphfonts

\input csc2x

\reglyphfont{padrcx8r}{padrc8r}

\reglyphfont{padscx8r}{padsc8r}

\endreglyphfonts

to alter the glyph names in the SC fonts in the Adobe Garamond (pad) family.
Note that the names of the destination fonts here really are rather arbitrary,
since they will only exist as .mtx files, and thus only need to work within your
local file system. In particular, all the \setrawglyph commands in the destin-
ation font files still refer to the source font, so it is that font which the drivers
need to know about.

11.4 Making map file fragments

A map file fragment is the lines3 of a map file that the corresponding driver
would need for handling some set of fonts. When told to, fontinst can (in a fairly

3Not in general an entire map file, hence the word fragment.

62

automatic way) create the map file fragment which is needed for the set of raw
fonts fontinst has (i) installed directly (using \installrawfont) or (ii) used as a
base font for some installed virtual font (generated by \installfont). Fontinst

does not support the map file syntaxes of every existing driver, but the system
is designed to be extendable and contributions that extend its capabilities are
welcome. Nor can fontinst examine your TEX system and determine every piece
of information needed to make the correct map file fragments, but you can tell
it roughly how your installation looks, it can make guesses which work most
of the time, and you can specify most things explicitly if the guesses turn out
to be wrong. Should the available options for configuring the process turn out
to be inadequate for your needs, then please write to the fontinst mailing list
about this—there is probably a way to improve the system so that your needs
can be met.

Now what does one have to do to use this map file fragment writer, then? First
you need to tell fontinst to record the information the map file fragment writer
needs. You do this by giving the command

\recordtransforms{whatever.tex}

at the beginning of the run. Here whatever.tex is the name of a file that will
be created, so you can use some other name if you like. After that you do all
the calls to \transformfont, \installfont, \installrawfont, \latinfamily,
etc. you need to make the fonts you want. When you’re done, you give the
command

\endrecordtransforms

and end the run (say \bye). The file whatever.tex will now contain the in-
formation about which fonts were used and what needs to be done with them.

The second step is to actually run the map file fragment writer. Observe that
it is located in the file finstmsc.sty, not fontinst.sty! The commands you
need to give it can be so few that you can type them in at TEX’s * prompt, but
if you are writing a command file then it should typically have the following
structure (comments not necessary, of course):

\input finstmsc.sty % Input command definitions
〈general settings〉 % See below
\adddriver{〈driver name〉}{〈output file〉} % Open output file
\input whatever.tex % Writes to output file(s)
\donedrivers % Close output file(s), tidy up
\bye % Quit

The \adddriver command gives the order “write map file entries for the
〈driver name〉 dvi driver to the file 〈output file〉.” The plan is that it should be
possible to use the name of just about any major driver (dvips, xdvi,4 pdftex,5

OzTeX, etc.) here and get suitable map file entries for that driver as output, but

4Or does that use the same map file as dvips? I heard somewhere that it did. /LH
5pdfTEX can read the map files generated for dvips, but a separate driver is desirable because

the formats are not completely identical.

63

for the moment only the dvips and dvipdfm6 drivers are supported.

You may also use debug or pltotf for 〈driver name〉. The debug “dvidriver” file
simply contains all the available information about each font (hence it should
come handy for debugging code writing entries for real drivers) in a format
that should be easy to interpret for a human. It could be the right choice if
you’re going to write the map file manually, as the combined effects of several
font transformations are not always easy to compute manually. The file gener-
ated for the pltotf “driver” is actually a shell script consisting of a sequence of
pltotf commands. These commands perform the pl to tfm conversion for pre-
cisely those fonts that are actually needed (fontinst usually generates pl files
also for a number of fonts at intermediate stages of transformation, and many
of these need not be converted to tfm files). The TFMfileprefix string can be
used to add a directory path to the tfm file names, perhaps saving the step of
moving them to their proper location later.

The file whatever.tex in the above example contains the commands (\make-
mapentry commands) that actually cause entries to be written to the output file.
It also contains a number of \storemapdata commands—these describe how
some given font was made. If some metric file you have used contains \set-
rawglyph commands that were not automatically generated by fontinst, then
there might not be a \storemapdata for the font they refer to in whatever.tex,
so you will have to include such a command yourself somewhere. This can for
example be done in the 〈general settings〉 part of the above example file.

Another class of things that will typically appear in the 〈general settings〉 part
above is commands that will inform the routines actually writing output about
your TEX system, about the set of fonts you are using on this run, or about
something else that might be useful. Some such commands are of a general
nature and affect what assumptions fontinst will make in certain conditions
when no specific information is available. For the moment there commands
are:

\AssumeMetafont Assume all fonts with pl metrics are bitmaps generated by
Metafont, and therefore make no entries for them.

\AssumeAMSBSYY Assume all fonts with pl metrics have their TEX names in all
upper case as postscript names—just like the Computer Modern fonts in
the AMS/Blue Sky/Y&Y distribution.

\AssumeBaKoMa Assume all fonts with pl metrics have their TEX names in all
lower case as postscript names—just like the Computer Modern fonts in
the BaKoMa distribution.

Otherwise the default action of the routine for finding out the postscript name
of a font simply is to observe that it hasn’t got a clue about what the right value
is when the metrics were taken from a pl file, and therefore it writes ‘??????’
for the postscript name.

6Whose support I made very much to illustrate that you don’t have to be a big and ancient
driver like dvips to have supporting code put into fontinst. (The fact that I just happened to have
printed out the documentation and that is was easy to read also helped, of course.) Note, however,
that there won’t be any support for a driver unless someone sits down and writes the code for it!
Don’t assume I will. /LH

64

\AssumeLWFN Assume postscript fonts for which nothing else has been spe-
cified are stored in files which are named according to the MacOS scheme
for LWFNs.

Otherwise the default action is to use the name of the afm or pl from which
the metrics were originally taken, and add the file suffix stored in the string
PSfontsuffix. The default value of this string is .pfa, but it can be changed
using \resetstr.

If neither the default nor the LWFN scheme produce correct results then you
may use the more specific \specifypsfont command, which describes exactly
which file (or files, if any) a given font is stored in. The syntax of this command
is

\specifypsfont{〈PS font name〉}{〈actions〉}

where the 〈actions〉 is a sequence of “action commands”. Currently the only
such command is

\download{〈file〉}

which instructs the map file writer to include in any entry using that PS font
and “instruction” that the specified file should be downloaded. Some examples
are

\specifypsfont{Times-Roman}{}

\specifypsfont{Shareware-Cyrillic-Regular}{\download{fcyr.gsf}}

\specifypsfont{zmnl8ac6}{%

\download{MinionMM.pfb}\download{zmnl8ac6.pro}%

}

Many dvi drivers (for example dvips) have more than one style of font down-
loading (e.g., partial and full downloading). This interface could be extended
to control also such finer details (for example by adding a \fulldownload com-
mand to force full download of a font), but requests for this has so far been
scarce.

Finally, there is the \declarepsencoding command which is used to link etx

files to postscript encodings. If no postscript encoding has been linked to
a given etx file then fontinst will automatically create a postscript encoding
(.enc) file for that encoding, and use this file for all reencoding commands. The
8r encoding is predeclared, and it doesn’t matter if an encoding is undeclared
if you never use it to reencode fonts, but there is potentially a problem with
not having declared encodings you have installed and use for reencoding, as
you may then find yourself having two files with identical names that define
encodings that do not have the same name (as far as postscript is concerned).

11.5 Tuning accent positions—an application of loops

The accent placements made by latin.mtx certainly aren’t perfect for all fonts,
and the only way to find out where they should be put is through trying in text
the accented letters you get for a couple of values for the position parameter

65

and deciding which one works best. Since to try one parameter value you
need to (i) edit it into an mtx file, (ii) run fontinst, (iii) run vptovf, (iv) run TEX
on some test text, and (v) print that text, trying one parameter value can take
annoyingly much time. Repeating the same procedure ten times to test ten
values is not something one does without being bored (unless one scripts it, of
course), but it is possible to try ten parameter values in a single virtual font,
and without doing very much typing.

Say you’re not too happy with how latin.mtx positions the accent in the
ohungarumlaut glyph:

\setglyph{ohungarumlaut}

\topaccent{o}{hungarumlaut}{500}

\endsetglyph

The 500 is the horizontal position (in thousandths of the width of the o) that the
centre of hungarumlaut in the glyph constructed will have, so that is the pos-
ition parameter value that you want to change. Create an mtx file containing
the code

\for(pos){250}{750}{50}

\setglyph{ohungarumlaut\strint{pos}}

\topaccent{o}{hungarumlaut}{\int{pos}}

\endsetglyph

\setleftrightkerning{ohungarumlaut\strint{pos}}

{ohungarumlaut}{1000}

\endfor(pos)

This will set eleven glyphs ohungarumlaut250,ohungarumlaut300,ohungarumlaut350,
. . . , ohungarumlaut750, each being an Hungarianly umlauted ‘o’ (i.e., an ‘ő’)
but all having that umlaut in slightly different positions. In order to put them
in a font, you also need to make an encoding that contains them. Therefore
create an etx file which contains the code

\relax\encoding

\nextslot{"C0}

\for(pos){250}{750}{50}

\setslot{ohungarumlaut\strint{pos}}

\endsetslot

\endfor(pos)

\endencoding

The command for installing this experiment font would be something like

\installfont{〈some name〉}{〈the normal list of metrics〉,〈the new mtx 〉}
{ot1,〈the new etx 〉}{OT1}. . .

The reason for including ot1 in the third argument above is that you’ll need
letters other than ‘ő’ against which you can compare the experimental glyphs.
It would not have been possible to use t1 instead of ot1 (even though that has
more Hungarian letters) since that would set all slots in the font and leave none
for these experimental ohungarumlauts.

It is even possible to use a loop for making the test text. The LATEX macros

66

\newcount\slotcount

\newcommand\testtext[3]{%

\slotcount=#1\relax

\begin{description}%

\loop\item[\the\slotcount]#3%

\ifnum #2>\slotcount \advance \slotcount 1 \repeat

\end{description}%

}

\DeclareTextCompositeCommand{\H}{OT1}{o}{\char\slotcount}

will let you write

\testtext{〈first〉}{〈last〉}{〈text〉}

to get the text 〈text〉 typeset once for each slot from 〈first〉 to 〈last〉 inclusive, with
\H{o} ranging through the glyphs in this interval. Thus in this case \testtext

{"C0}{"CA}{Erd\H{o}s}would be a trivial test.

11.6 Font installation commands

The \installfont, \installrawfont, and \installfontas commands have
the respective syntaxes

\installfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installrawfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installfontas{〈font-name〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

The 〈font-name〉 argument and the last five arguments are common to all these
commands. The first argument is the name of a TEX font to install. The last five
arguments are the NFSS attributes under which that font will be declared to
LATEX—encoding, family, series, shape, and size. It is worth observing that en-
coding names are usually in upper case, whereas the family, series, and shape
are usually in lower case. The size argument is either a shorthand (declared
using \declaresize) for a particular font size (or range of font sizes), or an
explicit list of font sizes or ranges of sizes, which is copied directly to the font
declaration. The most common case is to let the size argument be empty, as
that is declared as a shorthand for “any size”.

The \installfontas command does not itself create the font, it just makes a
note that the specified font declaration should be written to the proper FD file
at \endinstallfonts. The \installfontand \installrawfontcommands do
however produce the font, in the sense that they write a vpl and pl respectively
file for the font. It depends solely on the 〈metrics〉 and 〈etx-list〉 arguments what
this font will contain. Many features of these arguments are new with fontinst

v 1.9; therefore the complete syntaxes are described below.

Both arguments are comma-separated lists of basically file names (not includ-
ing an extension). The files listed in the 〈metrics〉 are font metric files which
together build up a glyph base (definitions of glyphs and metrics related to one

67

or several glyphs), whereas the files listed in the 〈etx-list〉 are encoding defini-
tion files that select a subset of the glyph base for turning into a TEX font. The
font metrics can be in either of the four formats mtx, pl, afm, and vpl, which
are considered in that order. If the metrics are not originally in mtx format then
they will be converted to this format (a new file will be created) before they are
used. The encoding definitions must be in etx format. The files actually read
will have a suffix .mtx, .pl, .afm, .vpl, or .etx appended to the name given,
depending on which format is expected.

Within each element of the comma-separated list, the actual file name is fol-
lowed by zero or more modifier clauses. A 〈modifier clause〉 consists of a keyword
followed by some number (usually one) of arguments, separated by spaces. The
whole thing looks a lot like the 〈rule specifications〉 of e.g. the \vrule command,
but here the spaces are mandatory. The currently defined 〈modifier clause〉s are

option 〈string〉 Available for metric and encoding files. This adds 〈string〉
to the list of options for this file, which may affect what code the file
executes. The file can then test, using the \ifoption command, whether
a specific string is one of the options it was given.

scaled 〈factor〉 Available for metric files. Causes the rawscale integer vari-
able to be set to the 〈factor〉 (an integer expression) while the file is being
read. This scales glyphs and kerns that are added to the glyph base by
the 〈factor〉.

suffix 〈suffix〉 Available for metric files. Causes 〈suffix〉 to be appended to
every glyph name appearing in a glyph or kern that file adds to the glyph
base. Thus “suffix /2” effectively changes a

\setrawglyph{a}. . .

to a

\setrawglyph{a/2}. . .

encoding 〈etx-name〉 Available for metric files, and forces fontinst to only con-
sider the pl and vpl formats for this font. As these file formats do
not contain glyph names, an etx file is used to assign glyph names to
the slots in the font. This etx file is usually selected according to the
CODINGSCHEME property of the pl or vpl (using the correspondences set
up via the \declareencoding command), but that information is not al-
ways as one would want it (there are even fonts for which it is quite
wrong). An encoding clause bypasses this automatic mechanism, so that
the file 〈etx-name〉.etx is used instead.

mtxasetx This is available for files in the 〈etx-list〉. The actual function of a

〈file-name〉 mtxasetx

item in the 〈etx-list〉 is that the file 〈file-name〉.mtx is inputted (not 〈file-name〉.etx)
and that the correspondence between glyph names and slot numbers set
up in \setrawglyph or \setscaledrawglyph commands in this file is
treated as if it had been set up by \setslot commands in an etx file.
Provided the mtx file is transformable, the glyph base will be unaffected.

68

The purpose of this feature is to simplify quick and dirty installations of
odd fonts for which no suitable etx file is available. This can be useful
in early stages of the design of a new font, but is inferior to installation
using proper etx files since one for example cannot specify any ligatures
in mtx files.

Furthermore there is a special exception for the 〈metrics〉: if the first token in
one of the list items is the control sequence \metrics, then the rest of that item
is interpreted as explicit metric commands to execute.

If the 〈metrics〉 of two subsequent \installfont or \installrawfont com-
mands are identical then the glyph bases will be identical as well. This creates
an opportunity for optimization, which fontinst makes use of by caching glyph
bases from one installation command to the next so that the glyph base does
not have to be rebuilt in these cases. A side-effect of this caching is that local
assignments made between two font installation commands are cleared out
with the glyph base, but \setint and similar fontinst commands make global
assignments when used in such positions.

Some examples might be in order. The first is an adaptation of an installation
command from mfnt-0.59 by Matthias Clasen and Ulrik Vieth: the installation
command for the 8-bit math font xma1000 (which can be thought of as being
to cmmi10 sort of as ecrm1000 is to cmr10). The first three encoding clauses are
more fine-tuning—without them, a few glyphs would get incorrect names—
but the last two are quite essential, as the msam10 and msbm10 fonts incorrectly
claim to have the coding scheme TEX MATH SYMBOLS.

\installfont{xma1000}{%

yma1000 encoding mcin,%

cmr10 encoding ot1upright,%

cmmi10,%

cmsy10 encoding omscal,%

msam10 encoding msam,%

msbm10 encoding msbm,%

mccmhax,mccmkern,mcmissing,%

cmsy10-base,cmsy10-extra%

}{mc}{MC}{cm}{m}{n}{<10->}

Also note the explicit LATEX size specification for the range “10 pt and up”.

The second example makes use of a suffix clause to combine the letters from
one font with the digits from another.

\installfont{msbrj8t}{msbr8r,msbrc8r suffix /2,latin}{digit2,t1}

{T1}{msbj}{m}{n}{}

In this case, the glyph base contains the glyphs of Monotype Sabon (SabonMT)—
under names such as A for ‘A’, a for ‘a’, and one for a lining digit one—as well
as the glyphs of Monotype Sabon Small Caps and Oldstyle Figures (SabonMT-
SCOSF)—under names such as A/2 for ‘A’, a/2 for ‘A’, and one/2 for a hanging
digit one. The digit2.etx file simply makes the definition

69

\setcommand\digit#1{#1/2}

which causes t1.etx to put zero/2 in slot 48 (digit zero), one/2 in slot 49 etc.,
instead of as it normally would zero in slot 48, one in slot 49 and so on. The
net effect is that the digits in the generated msbrj8t is from msbrc8r (SabonMT-
SCOSF) but everything else is from msbr8r (SabonMT).

The third example makes use of an mtxasetx clause to install (with its default
encoding) a font for which creating an appropriate etx file seems not worth the
trouble.

\installrawfont{psyr}{psyr,\metrics

\setint{xheight}{\height{alpha}}

}{txtfdmns,psyr mtxasetx}{U}{psy}{m}{n}{}

The effect of the second psyr is that psyr.mtx is read (in case there was no
psyr.mtx then it is created from (hopefully) psyr.afm) and the information
in it will form the glyph base. Because of the \metrics control sequence, the
rest of that item will be interpreted as explicit metric commands modifying
the glyph base, and thus the \setint command can provide a value for the
xheight variable (there doesn’t seem to be such a value in the afm). Once the
glyph base is completed, the \installrawfont starts writing the file psyr.pl

(that’s for the first psyr). The encoding of that font will, because of the psyr

mtxasetx, be the same as that used in psyr.mtx. Finally, the txtfdmns is for
txtfdmns.etx, an etx file which sets fontdimens 1–16 as for a T1 encoded font
but does not set any slots. Since psyr.mtx reinterpreted as an etx file sets slots
but no fontdimens, these complement each other nicely.

11.7 Bounding boxes

Han The Thanh has created an implementation of bounding box support for
fontinst, and it is a modified form of that support is distributed with fontinst as
the file bbox.sty. To load this, begin your command file with

\input fontinst.sty

\input bbox.sty

The reason for not making it default is that keeping track of bounding boxes
increases some of fontinst’s memory requirements quite a lot.

One important characteristic of this implementation is that the dimensions of
the bounding box are not bundled into the same data structure (the \g-〈glyph〉
macros) as the glyph’s width, height, depth, and italic correction are, but stored
in a separate data structure (the \gb-〈glyph〉 macros). A glyph doesn’t need to
have its bounding box set, it is simply a piece of information that fontinst will
store if you tell it to and which you can later retrieve.

The bounding box will be stored as coordinates of the sides in the normal AFM
coordinate system. The commands for retrieving these coordinates are

70

Command Side
\bbtop{〈glyph〉} top (y-coordinate)
\bbbottom{〈glyph〉} bottom (y-coordinate)
\bbleft{〈glyph〉} left (x-coordinate)
\bbright{〈glyph〉} right (x-coordinate)

In Thanh’s implementation the command names were \ury, \lly, \llx, and
\urx respectively instead, but I think the former are easier to remember. If no
bounding box has been set for a glyph then the above commands will instead
report the corresponding coordinate of the glyph’s TEX box (i.e. \height{〈glyph〉},
\neg{\depth{〈glyph〉}}, 0, and \width{〈glyph〉} respectively).

The command for setting the bounding box of a glyph is

\setglyphbb{〈glyph〉}{〈left〉}{〈bottom〉}{〈right〉}{〈top〉}

Acknowledgements

We’d like to thank all of the fontinst α-testers, especially Karl Berry, Damian
Cugley, Steve Grahthwohl, Yannis Haralambous, Alan Hoenig, Rob Hutch-

ings, Constantin Kahn, Peter Busk Laursen, Ciarán Ó Duibhı́n, Hilmar Schle-
gel, Paul Thompson, Norman Walsh and John Wells, who made excellent bug-
catchers!

Thanks to Barry Smith, Frank Mittelbach, and especially Sebastian Rahtz for
many useful email discussions on how virtual fonts should interact with
LATEX 2ε.

Thanks to Karl Berry and Damain Cugley for detailed comments on this docu-
mentation.

Thanks to David Carlisle for the use of his trig macros for calculating trigono-
metry.

71

